These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31825416)
1. Predicting the α-relaxation time of glycerol confined in 1.16 nm pores of zeolitic imidazolate frameworks. Ngai KL; Lunkenheimer P; Loidl A Phys Chem Chem Phys; 2020 Jan; 22(2):507-511. PubMed ID: 31825416 [TBL] [Abstract][Full Text] [Related]
2. Glycerol confined in zeolitic imidazolate frameworks: The temperature-dependent cooperativity length scale of glassy freezing. Uhl M; Fischer JKH; Sippel P; Bunzen H; Lunkenheimer P; Volkmer D; Loidl A J Chem Phys; 2019 Jan; 150(2):024504. PubMed ID: 30646699 [TBL] [Abstract][Full Text] [Related]
3. The structural α-relaxation times of prilocaine confined in 1 nm pores of molecular sieves: quantitative explanation by the coupling model. Ngai KL; Wojnarowska Z; Paluch M Phys Chem Chem Phys; 2020 May; 22(17):9257-9261. PubMed ID: 32307500 [TBL] [Abstract][Full Text] [Related]
4. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules. Capaccioli S; Ngai KL; Ancherbak S; Bertoldo M; Ciampalini G; Thayyil MS; Wang LM J Chem Phys; 2019 Jul; 151(3):034504. PubMed ID: 31325935 [TBL] [Abstract][Full Text] [Related]
5. Why the Brillouin Light Scattering Relaxation Times of Molten Zinc Chloride Are Shorter and Weaker in Temperature Dependence than the Structural Relaxation Times from Depolarized Light and Neutron Spin Echo Spectroscopy. Ngai KL J Phys Chem A; 2021 Apr; 125(13):2759-2763. PubMed ID: 33759529 [TBL] [Abstract][Full Text] [Related]
6. NMR studies on the temperature-dependent dynamics of confined water. Sattig M; Reutter S; Fujara F; Werner M; Buntkowsky G; Vogel M Phys Chem Chem Phys; 2014 Sep; 16(36):19229-40. PubMed ID: 25096474 [TBL] [Abstract][Full Text] [Related]
12. Relation between solvent and protein dynamics as studied by dielectric spectroscopy. Jansson H; Bergman R; Swenson J J Phys Chem B; 2005 Dec; 109(50):24134-41. PubMed ID: 16375405 [TBL] [Abstract][Full Text] [Related]
13. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay. Elamin K; Björklund J; Nyhlén F; Yttergren M; Mårtensson L; Swenson J J Chem Phys; 2014 Jul; 141(3):034505. PubMed ID: 25053324 [TBL] [Abstract][Full Text] [Related]
14. Effect of Surface Chemistry on the Glass-Transition Dynamics of Poly(phenyl methyl siloxane) Confined in Alumina Nanopores. Winkler R; Tu W; Laskowski L; Adrjanowicz K Langmuir; 2020 Jul; 36(26):7553-7565. PubMed ID: 32515976 [TBL] [Abstract][Full Text] [Related]
15. Slow Water Dynamics near a Glass Transition or a Solid Interface: A Common Rationale. Klameth F; Vogel M J Phys Chem Lett; 2015 Nov; 6(21):4385-9. PubMed ID: 26722975 [TBL] [Abstract][Full Text] [Related]
17. Glass transition of partially crystallized gelatin-water mixtures studied by broadband dielectric spectroscopy. Sasaki K; Kita R; Shinyashiki N; Yagihara S J Chem Phys; 2014 Mar; 140(12):124506. PubMed ID: 24697458 [TBL] [Abstract][Full Text] [Related]
18. Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF-4. Wharmby MT; Henke S; Bennett TD; Bajpe SR; Schwedler I; Thompson SP; Gozzo F; Simoncic P; Mellot-Draznieks C; Tao H; Yue Y; Cheetham AK Angew Chem Int Ed Engl; 2015 May; 54(22):6447-51. PubMed ID: 25873105 [TBL] [Abstract][Full Text] [Related]
19. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films. Ngai KL; Capaccioli S; Paluch M; Prevosto D J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795 [TBL] [Abstract][Full Text] [Related]