These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 31825496)

  • 41. Ratiometric GPCR signaling enables directional sensing in yeast.
    Henderson NT; Pablo M; Ghose D; Clark-Cotton MR; Zyla TR; Nolen J; Elston TC; Lew DJ
    PLoS Biol; 2019 Oct; 17(10):e3000484. PubMed ID: 31622333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pheromone responsiveness is regulated by components of the Gpr1p-mediated glucose sensing pathway in Saccharomyces cerevisiae.
    Willhite DG; Brigati JR; Selcer KE; Denny JE; Duck ZA; Wright SE
    Yeast; 2014 Sep; 31(9):361-74. PubMed ID: 25044394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pheromone response in yeast.
    Fields S
    Trends Biochem Sci; 1990 Jul; 15(7):270-3. PubMed ID: 2116688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Screening of stable G-protein-coupled receptor variants in Saccharomyces cerevisiae.
    Shiroishi M; Kobayashi T
    Methods Mol Biol; 2015; 1261():159-70. PubMed ID: 25502199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative analysis of the yeast pheromone pathway.
    Shellhammer JP; Pomeroy AE; Li Y; Dujmusic L; Elston TC; Hao N; Dohlman HG
    Yeast; 2019 Aug; 36(8):495-518. PubMed ID: 31022772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Yeast-based fluorescence reporter assay of G protein-coupled receptor signalling for flow cytometric screening: FAR1-disruption recovers loss of episomal plasmid caused by signalling in yeast.
    Ishii J; Tanaka T; Matsumura S; Tatematsu K; Kuroda S; Ogino C; Fukuda H; Kondo A
    J Biochem; 2008 May; 143(5):667-74. PubMed ID: 18281298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superfamily of G-protein coupled receptors (GPCRs)--extraordinary and outstanding success of evolution.
    Kochman K
    Postepy Hig Med Dosw (Online); 2014 Oct; 68():1225-37. PubMed ID: 25380205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The N-terminus of the yeast G protein-coupled receptor Ste2p plays critical roles in surface expression, signaling, and negative regulation.
    Uddin MS; Hauser M; Naider F; Becker JM
    Biochim Biophys Acta; 2016 Apr; 1858(4):715-24. PubMed ID: 26707753
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of GPCR dimerisation/oligomerisation in receptor signalling.
    Milligan G; Canals M; Pediani JD; Ellis J; Lopez-Gimenez JF
    Ernst Schering Found Symp Proc; 2006; (2):145-61. PubMed ID: 17703581
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of receptor dynamics by the regulator of G protein signaling Sst2.
    Venkatapurapu SP; Kelley JB; Dixit G; Pena M; Errede B; Dohlman HG; Elston TC
    Mol Biol Cell; 2015 Nov; 26(22):4124-34. PubMed ID: 26310439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2.
    Morioka S; Shigemori T; Hara K; Morisaka H; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2013 May; 97(9):4013-20. PubMed ID: 23053114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GPCR-Based Chemical Biosensors for Medium-Chain Fatty Acids.
    Mukherjee K; Bhattacharyya S; Peralta-Yahya P
    ACS Synth Biol; 2015 Dec; 4(12):1261-9. PubMed ID: 25992593
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A constitutively active GPCR retains its G protein specificity and the ability to form dimers.
    Ladds G; Davis K; Das A; Davey J
    Mol Microbiol; 2005 Jan; 55(2):482-97. PubMed ID: 15659165
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methodological advances: the unsung heroes of the GPCR structural revolution.
    Ghosh E; Kumari P; Jaiman D; Shukla AK
    Nat Rev Mol Cell Biol; 2015 Feb; 16(2):69-81. PubMed ID: 25589408
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A walk-through of the yeast mating pheromone response pathway.
    Bardwell L
    Peptides; 2005 Feb; 26(2):339-50. PubMed ID: 15690603
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection.
    Saikia S; Bordoloi M; Sarmah R
    Curr Drug Targets; 2019; 20(5):522-539. PubMed ID: 30394207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide-Dependent Growth in Yeast via Fine-Tuned Peptide/GPCR-Activated Essential Gene Expression.
    Billerbeck S; Cornish VW
    Biochemistry; 2022 Feb; 61(3):150-159. PubMed ID: 35023728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. G-protein-coupled receptors in drug discovery: nanosizing using cell-free technologies and molecular biology approaches.
    Leifert WR; Aloia AL; Bucco O; Glatz RV; McMurchie EJ
    J Biomol Screen; 2005 Dec; 10(8):765-79. PubMed ID: 16234342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Humanized CB1R Yeast Biosensor Enables Facile Screening of Cannabinoid Compounds.
    Mulvihill CJ; Lutgens JD; Gollihar JD; Bachanová P; Tramont C; Marcotte EM; Ellington AD; Gardner EC
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892247
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of Gnr1p, a negative regulator of G alpha signalling in Schizosaccharomyces pombe, and its complementation by human G beta subunits.
    Goddard A; Ladds G; Forfar R; Davey J
    Fungal Genet Biol; 2006 Dec; 43(12):840-51. PubMed ID: 16884933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.