These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31825698)

  • 21. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shortening and prolongation of saccade latencies following microsaccades.
    Rolfs M; Laubrock J; Kliegl R
    Exp Brain Res; 2006 Mar; 169(3):369-76. PubMed ID: 16328308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blink-perturbed saccades in monkey. II. Superior colliculus activity.
    Goossens HH; Van Opstal AJ
    J Neurophysiol; 2000 Jun; 83(6):3430-52. PubMed ID: 10848560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.
    Ohtsuka K; Noda H
    J Neurophysiol; 1995 Nov; 74(5):1828-40. PubMed ID: 8592177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades.
    Schneider L; Dominguez-Vargas AU; Gibson L; Kagan I; Wilke M
    J Neurophysiol; 2020 Jan; 123(1):367-391. PubMed ID: 31747331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blink-perturbed saccades in monkey. I. Behavioral analysis.
    Goossens HH; Van Opstal AJ
    J Neurophysiol; 2000 Jun; 83(6):3411-29. PubMed ID: 10848559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements.
    Russo GS; Bruce CJ
    J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements.
    Dorris MC; Paré M; Munoz DP
    J Neurosci; 1997 Nov; 17(21):8566-79. PubMed ID: 9334428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-term adaptation of electrically induced saccades in monkey superior colliculus.
    Melis BJ; van Gisbergen JA
    J Neurophysiol; 1996 Sep; 76(3):1744-58. PubMed ID: 8890289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled movement processing: superior colliculus activity associated with countermanded saccades.
    Paré M; Hanes DP
    J Neurosci; 2003 Jul; 23(16):6480-9. PubMed ID: 12878689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microsaccade production during saccade cancelation in a stop-signal task.
    Godlove DC; Schall JD
    Vision Res; 2016 Jan; 118():5-16. PubMed ID: 25448116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Saccade target selection in the superior colliculus during a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Oct; 88(4):2019-34. PubMed ID: 12364525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades.
    Li CS; Mazzoni P; Andersen RA
    J Neurophysiol; 1999 Apr; 81(4):1827-38. PubMed ID: 10200217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The superior colliculus and the steering of saccades toward a moving visual target.
    Goffart L; Cecala AL; Gandhi NJ
    J Neurophysiol; 2017 Nov; 118(5):2890-2901. PubMed ID: 28904104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural activity in the primate superior colliculus and saccadic reaction times in double-step experiments.
    Lünenburger L; Lindner W; Hoffmann KP
    Prog Brain Res; 2003; 142():91-107. PubMed ID: 12693256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional properties of corticotectal neurons in the monkey's frontal eye field.
    Segraves MA; Goldberg ME
    J Neurophysiol; 1987 Dec; 58(6):1387-419. PubMed ID: 3437337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The magnification factor accounts for the greater hypometria and imprecision of larger saccades: Evidence from a parametric human-behavioral study.
    Vitu F; Casteau S; Adeli H; Zelinsky GJ; Castet E
    J Vis; 2017 Apr; 17(4):2. PubMed ID: 28388698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.