These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 31825802)
1. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Li S; Lin Q; Shao X; Zhu X; Wu J; Wu B; Zhang M; Zhou W; Zhou Y; Jin H; Zhang Z; Qi C; Shen J; Mou S; Gu L; Ni Z Free Radic Biol Med; 2020 May; 152():632-649. PubMed ID: 31825802 [TBL] [Abstract][Full Text] [Related]
2. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Lin Q; Li S; Jiang N; Shao X; Zhang M; Jin H; Zhang Z; Shen J; Zhou Y; Zhou W; Gu L; Lu R; Ni Z Redox Biol; 2019 Sep; 26():101254. PubMed ID: 31229841 [TBL] [Abstract][Full Text] [Related]
3. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Ito S; Araya J; Kurita Y; Kobayashi K; Takasaka N; Yoshida M; Hara H; Minagawa S; Wakui H; Fujii S; Kojima J; Shimizu K; Numata T; Kawaishi M; Odaka M; Morikawa T; Harada T; Nishimura SL; Kaneko Y; Nakayama K; Kuwano K Autophagy; 2015; 11(3):547-59. PubMed ID: 25714760 [TBL] [Abstract][Full Text] [Related]
4. HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome. Li J; Lin Q; Shao X; Li S; Zhu X; Wu J; Mou S; Gu L; Wang Q; Zhang M; Zhang K; Lu J; Ni Z Cell Death Dis; 2023 Mar; 14(3):200. PubMed ID: 36928344 [TBL] [Abstract][Full Text] [Related]
5. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Tang C; Han H; Yan M; Zhu S; Liu J; Liu Z; He L; Tan J; Liu Y; Liu H; Sun L; Duan S; Peng Y; Liu F; Yin XM; Zhang Z; Dong Z Autophagy; 2018; 14(5):880-897. PubMed ID: 29172924 [TBL] [Abstract][Full Text] [Related]
6. The PINK1/PARK2/optineurin pathway of mitophagy is activated for protection in septic acute kidney injury. Wang Y; Zhu J; Liu Z; Shu S; Fu Y; Liu Y; Cai J; Tang C; Liu Y; Yin X; Dong Z Redox Biol; 2021 Jan; 38():101767. PubMed ID: 33137712 [TBL] [Abstract][Full Text] [Related]
7. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Tsubouchi K; Araya J; Kuwano K Inflamm Regen; 2018; 38():18. PubMed ID: 30386443 [TBL] [Abstract][Full Text] [Related]
8. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Chen K; Dai H; Yuan J; Chen J; Lin L; Zhang W; Wang L; Zhang J; Li K; He Y Cell Death Dis; 2018 Jan; 9(2):105. PubMed ID: 29367621 [TBL] [Abstract][Full Text] [Related]
9. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Liu T; Yang Q; Zhang X; Qin R; Shan W; Zhang H; Chen X Life Sci; 2020 Sep; 257():118116. PubMed ID: 32702447 [TBL] [Abstract][Full Text] [Related]
10. Inflammasome-Independent Role of NLRP3 Mediates Mitochondrial Regulation in Renal Injury. Kim SM; Kim YG; Kim DJ; Park SH; Jeong KH; Lee YH; Lim SJ; Lee SH; Moon JY Front Immunol; 2018; 9():2563. PubMed ID: 30483252 [TBL] [Abstract][Full Text] [Related]
11. Regulators of calcineurin 1 deficiency attenuates tubulointerstitial fibrosis through improving mitochondrial fitness. Sang XY; Xiao JJ; Liu Q; Zhu R; Dai JJ; Zhang C; Yu H; Yang SJ; Zhang BF FASEB J; 2020 Nov; 34(11):. PubMed ID: 32896034 [TBL] [Abstract][Full Text] [Related]
12. Intermedin attenuates renal fibrosis by induction of heme oxygenase-1 in rats with unilateral ureteral obstruction. Qiao X; Wang L; Wang Y; Su X; Qiao Y; Fan Y; Peng Z BMC Nephrol; 2017 Jul; 18(1):232. PubMed ID: 28697727 [TBL] [Abstract][Full Text] [Related]
13. Coenzyme Q10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction. Jiang YJ; Jin J; Nan QY; Ding J; Cui S; Xuan MY; Piao MH; Piao SG; Zheng HL; Jin JZ; Chung BH; Yang CW; Li C Int Immunopharmacol; 2022 Jul; 108():108868. PubMed ID: 35636077 [TBL] [Abstract][Full Text] [Related]
14. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. Jin L; Yu B; Liu G; Nie W; Wang J; Chen J; Xiao L; Xia H; Han F; Yang Y FASEB J; 2022 Jun; 36(6):e22342. PubMed ID: 35524750 [TBL] [Abstract][Full Text] [Related]
15. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Livingston MJ; Wang J; Zhou J; Wu G; Ganley IG; Hill JA; Yin XM; Dong Z Autophagy; 2019 Dec; 15(12):2142-2162. PubMed ID: 31066324 [TBL] [Abstract][Full Text] [Related]
16. Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats. Jiménez-Uribe AP; Bellido B; Aparicio-Trejo OE; Tapia E; Sánchez-Lozada LG; Hernández-Santos JA; Fernández-Valverde F; Hernández-Cruz EY; Orozco-Ibarra M; Pedraza-Chaverri J Free Radic Biol Med; 2021 Aug; 172():358-371. PubMed ID: 34175439 [TBL] [Abstract][Full Text] [Related]
17. PPARγ and mitophagy are involved in hypoxia/reoxygenation-induced renal tubular epithelial cells injury. Wei L; Qin Y; Jiang L; Yu X; Xi Z J Recept Signal Transduct Res; 2019 Jun; 39(3):235-242. PubMed ID: 31538845 [TBL] [Abstract][Full Text] [Related]
18. Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells. Tan J; Xie Q; Song S; Miao Y; Zhang Q Med Sci Monit; 2018 Mar; 24():1258-1267. PubMed ID: 29494565 [TBL] [Abstract][Full Text] [Related]