These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31825805)

  • 1. Which came first, the transcriptional regulator or its target genes? An evolutionary perspective into the construction of eukaryotic regulons.
    Trefflich S; Dalmolin RJS; Ortega JM; Castro MAA
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194472. PubMed ID: 31825805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis.
    Leyn SA; Kazanov MD; Sernova NV; Ermakova EO; Novichkov PS; Rodionov DA
    J Bacteriol; 2013 Jun; 195(11):2463-73. PubMed ID: 23504016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E. coli.
    Balaji S; Babu MM; Aravind L
    J Mol Biol; 2007 Sep; 372(4):1108-1122. PubMed ID: 17706247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics and evolution of transcriptional regulons in
    Leyn SA; Suvorova IA; Kazakov AE; Ravcheev DA; Stepanova VV; Novichkov PS; Rodionov DA
    Microb Genom; 2016 Jul; 2(7):e000061. PubMed ID: 28348857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merging 1D and 3D genomic information: Challenges in modelling and validation.
    Merlotti A; Rosa A; Remondini D
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194415. PubMed ID: 31672524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.
    Novichkov PS; Kazakov AE; Ravcheev DA; Leyn SA; Kovaleva GY; Sutormin RA; Kazanov MD; Riehl W; Arkin AP; Dubchak I; Rodionov DA
    BMC Genomics; 2013 Nov; 14():745. PubMed ID: 24175918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic landscape, gene signatures and regulatory profile of aging in the human brain.
    González-Velasco O; Papy-García D; Le Douaron G; Sánchez-Santos JM; De Las Rivas J
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194491. PubMed ID: 32006715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory network inference resources: A practical overview.
    Mercatelli D; Scalambra L; Triboli L; Ray F; Giorgi FM
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194430. PubMed ID: 31678629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of the core and extended regulons of global transcription factors.
    Dufour YS; Kiley PJ; Donohue TJ
    PLoS Genet; 2010 Jul; 6(7):e1001027. PubMed ID: 20661434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial regulatory networks are extremely flexible in evolution.
    Lozada-Chávez I; Janga SC; Collado-Vides J
    Nucleic Acids Res; 2006; 34(12):3434-45. PubMed ID: 16840530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities.
    Müller-Dott S; Tsirvouli E; Vazquez M; Ramirez Flores RO; Badia-I-Mompel P; Fallegger R; Türei D; Lægreid A; Saez-Rodriguez J
    Nucleic Acids Res; 2023 Nov; 51(20):10934-10949. PubMed ID: 37843125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation shapes the organization of genes on bacterial chromosomes.
    Janga SC; Salgado H; Martínez-Antonio A
    Nucleic Acids Res; 2009 Jun; 37(11):3680-8. PubMed ID: 19372274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of novel transcription factor regulons through inference of their binding sites.
    Elmas A; Wang X; Samoilov MS
    BMC Bioinformatics; 2015 Sep; 16():299. PubMed ID: 26388177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulons of global transcription factors in Corynebacterium glutamicum.
    Toyoda K; Inui M
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):45-60. PubMed ID: 26496920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory network structure as a dominant determinant of transcription factor evolutionary rate.
    Coulombe-Huntington J; Xia Y
    PLoS Comput Biol; 2012; 8(10):e1002734. PubMed ID: 23093926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics and evolution of regulons of the LacI-family transcription factors.
    Ravcheev DA; Khoroshkin MS; Laikova ON; Tsoy OV; Sernova NV; Petrova SA; Rakhmaninova AB; Novichkov PS; Gelfand MS; Rodionov DA
    Front Microbiol; 2014; 5():294. PubMed ID: 24966856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of plant transcription factor target sequences.
    Franco-Zorrilla JM; Solano R
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):21-30. PubMed ID: 27155066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and evolution of eukaryotic transcription factors.
    de Mendoza A; Sebé-Pedrós A
    Curr Opin Genet Dev; 2019 Oct; 58-59():25-32. PubMed ID: 31466037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species-Specific Changes in a Primate Transcription Factor Network Provide Insights into the Molecular Evolution of the Primate Prefrontal Cortex.
    Berto S; Nowick K
    Genome Biol Evol; 2018 Aug; 10(8):2023-2036. PubMed ID: 30059966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.