BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31825809)

  • 1. Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET.
    Szibor M; Gainutdinov T; Fernandez-Vizarra E; Dufour E; Gizatullina Z; Debska-Vielhaber G; Heidler J; Wittig I; Viscomi C; Gellerich F; Moore AL
    Biochim Biophys Acta Bioenerg; 2020 Feb; 1861(2):148137. PubMed ID: 31825809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative oxidase expression in the mouse enables bypassing cytochrome c oxidase blockade and limits mitochondrial ROS overproduction.
    El-Khoury R; Dufour E; Rak M; Ramanantsoa N; Grandchamp N; Csaba Z; Duvillié B; Bénit P; Gallego J; Gressens P; Sarkis C; Jacobs HT; Rustin P
    PLoS Genet; 2013; 9(1):e1003182. PubMed ID: 23300486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of mitochondrial superoxide production by reverse electron transport at complex I.
    Robb EL; Hall AR; Prime TA; Eaton S; Szibor M; Viscomi C; James AM; Murphy MP
    J Biol Chem; 2018 Jun; 293(25):9869-9879. PubMed ID: 29743240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The alternative oxidase AOX does not rescue the phenotype of tko25t mutant flies.
    Kemppainen KK; Kemppainen E; Jacobs HT
    G3 (Bethesda); 2014 Aug; 4(10):2013-21. PubMed ID: 25147191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways.
    Van den Bergen CW; Wagner AM; Krab K; Moore AL
    Eur J Biochem; 1994 Dec; 226(3):1071-8. PubMed ID: 7813462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.
    El-Khoury R; Kaulio E; Lassila KA; Crowther DC; Jacobs HT; Rustin P
    Free Radic Biol Med; 2016 Jul; 96():57-66. PubMed ID: 27094492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial ubiquinol oxidation is necessary for tumour growth.
    Martínez-Reyes I; Cardona LR; Kong H; Vasan K; McElroy GS; Werner M; Kihshen H; Reczek CR; Weinberg SE; Gao P; Steinert EM; Piseaux R; Budinger GRS; Chandel NS
    Nature; 2020 Sep; 585(7824):288-292. PubMed ID: 32641834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster.
    Scialò F; Sriram A; Stefanatos R; Spriggs RV; Loh SHY; Martins LM; Sanz A
    Redox Biol; 2020 May; 32():101450. PubMed ID: 32146156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplay between mitochondrial reactive oxygen species formation and the coenzyme Q reduction level.
    Dominiak K; Koziel A; Jarmuszkiewicz W
    Redox Biol; 2018 Sep; 18():256-265. PubMed ID: 30059902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenotopic expression of alternative oxidase (AOX) to study mechanisms of mitochondrial disease.
    Viscomi C; Moore AL; Zeviani M; Szibor M
    Biochim Biophys Acta Bioenerg; 2023 Apr; 1864(2):148947. PubMed ID: 36481273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool.
    Dry IB; Moore AL; Day DA; Wiskich JT
    Arch Biochem Biophys; 1989 Aug; 273(1):148-57. PubMed ID: 2757390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation.
    Fernandez-Ayala DJ; Sanz A; Vartiainen S; Kemppainen KK; Babusiak M; Mustalahti E; Costa R; Tuomela T; Zeviani M; Chung J; O'Dell KM; Rustin P; Jacobs HT
    Cell Metab; 2009 May; 9(5):449-60. PubMed ID: 19416715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The alternative oxidase, a tool for compensating cytochrome c oxidase deficiency in human cells.
    Dassa EP; Dufour E; Goncalves S; Jacobs HT; Rustin P
    Physiol Plant; 2009 Dec; 137(4):427-34. PubMed ID: 19493305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway.
    Guerrero-Castillo S; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2009 Feb; 1787(2):75-85. PubMed ID: 19038229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization.
    Cabrera-Orefice A; Chiquete-Félix N; Espinasa-Jaramillo J; Rosas-Lemus M; Guerrero-Castillo S; Peña A; Uribe-Carvajal S
    Biochim Biophys Acta; 2014 Jan; 1837(1):73-84. PubMed ID: 23933018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia.
    Szibor M; Schreckenberg R; Gizatullina Z; Dufour E; Wiesnet M; Dhandapani PK; Debska-Vielhaber G; Heidler J; Wittig I; Nyman TA; Gärtner U; Hall AR; Pell V; Viscomi C; Krieg T; Murphy MP; Braun T; Gellerich FN; Schlüter KD; Jacobs HT
    J Cell Mol Med; 2020 Mar; 24(6):3534-3548. PubMed ID: 32040259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Supercomplexes Do Not Enhance Catalysis by Quinone Channeling.
    Fedor JG; Hirst J
    Cell Metab; 2018 Sep; 28(3):525-531.e4. PubMed ID: 29937372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.