These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31825858)

  • 1. Design of Ceramic Packages for Ultrasonically Coupled Implantable Medical Devices.
    Shen K; Maharbiz MM
    IEEE Trans Biomed Eng; 2020 Aug; 67(8):2230-2240. PubMed ID: 31825858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method and Analysis to Enable Efficient Piezoelectric Transducer-Based Ultrasonic Power and Data Links for Miniaturized Implantable Medical Devices.
    Sonmezoglu S; Darvishian A; Shen K; Bustamante MJ; Kandala A; Maharbiz MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3362-3370. PubMed ID: 34197320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2014 Sep; 54(7):1929-37. PubMed ID: 24861424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices.
    Shi Q; Wang T; Lee C
    Sci Rep; 2016 Apr; 6():24946. PubMed ID: 27112530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices.
    Song SH; Kim A; Ziaie B
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Tunable Ultrasonic Receivers for Efficient Powering of Implantable Medical Devices With Reconfigurable Power Loads.
    Chang TC; Weber MJ; Wang ML; Charthad J; Khuri-Yakub BP; Arbabian A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1554-1562. PubMed ID: 27623580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model validation of untethered, ultrasonic neural dust motes for cortical recording.
    Seo D; Carmena JM; Rabaey JM; Maharbiz MM; Alon E
    J Neurosci Methods; 2015 Apr; 244():114-22. PubMed ID: 25109901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultrasonically controlled switching system for power management in implantable devices.
    Zhou J; Kim A; Ziaie B
    Biomed Microdevices; 2018 May; 20(2):42. PubMed ID: 29789965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceramic packaging in neural implants.
    Shen K; Maharbiz MM
    J Neural Eng; 2021 Feb; 18(2):025002. PubMed ID: 33624611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
    Vihvelin H; Leadbetter J; Bance M; Brown JA; Adamson RB
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):404-11. PubMed ID: 26054073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants.
    Benedict BC; Ghanbari MM; Muller R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2756-2765. PubMed ID: 35939455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices.
    Sanni A; Vilches A; Toumazou C
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):297-308. PubMed ID: 23853174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-to-End Design of Efficient Ultrasonic Power Links for Scaling Towards Submillimeter Implantable Receivers.
    Chang TC; Weber MJ; Charthad J; Baltsavias S; Arbabian A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1100-1111. PubMed ID: 30235147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and acoustic characterization of limited diffraction ultrasonic devices.
    Aulet A; Núñez I; Moreno E; Eiras JA; Negreira CA
    J Acoust Soc Am; 2010 May; 127(5):2737-40. PubMed ID: 21117721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro package of short term wireless implantable microfabricated systems.
    Bu L; Cong P; Kuo HI; Ye X; Ko W
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6395-9. PubMed ID: 19964419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Volumetric Efficiency and Backscatter Communication in Biosensing Ultrasonic Implants.
    Ghanbari MM; Muller R
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1381-1392. PubMed ID: 33095711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulation of Capacitive Micromachined Ultrasonic Transducers (CMUTs) for the Acoustic Communication between Medical Implants.
    Oevermann J; Weber P; Tretbar SH
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails.
    Koyama D; Ide T; Friend JR; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):597-604. PubMed ID: 17375828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexural vibration analyses of piezoelectric ceramic tubes with mass loads in ultrasonic actuators.
    Zhang H; Zhang SY; Wang TH
    Ultrasonics; 2007 Dec; 47(1-4):82-9. PubMed ID: 17869319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonically Powered Compact Implantable Dust for Optogenetics.
    Laursen K; Rashidi A; Hosseini S; Mondal T; Corbett B; Moradi F
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):583-594. PubMed ID: 32406843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.