These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31825901)

  • 21. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics.
    Liu YC; Xiao YF; Luan X; Wong CW
    Phys Rev Lett; 2013 Apr; 110(15):153606. PubMed ID: 25167269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From cavity optomechanics to cavity-less exciton optomechanics: a review.
    Chang H; Zhang J
    Nanoscale; 2022 Nov; 14(45):16710-16730. PubMed ID: 36245359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circuit optomechanics: concepts and materials.
    Pernice WH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1889-98. PubMed ID: 25389167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phonon Coupling between a Nanomechanical Resonator and a Quantum Fluid.
    Fong KY; Jin D; Poot M; Bruch A; Tang HX
    Nano Lett; 2019 Jun; 19(6):3716-3722. PubMed ID: 31038975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An apparatus for in-vacuum loading of nanoparticles into an optical trap.
    Weisman E; Galla CK; Montoya C; Alejandro E; Lim J; Beck M; Winstone GP; Grinin A; Eom W; Geraci AA
    Rev Sci Instrum; 2022 Nov; 93(11):115115. PubMed ID: 36461504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field.
    Gloppe A; Verlot P; Dupont-Ferrier E; Siria A; Poncharal P; Bachelier G; Vincent P; Arcizet O
    Nat Nanotechnol; 2014 Nov; 9(11):920-6. PubMed ID: 25240676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cavity opto-mechanics using an optically levitated nanosphere.
    Chang DE; Regal CA; Papp SB; Wilson DJ; Ye J; Painter O; Kimble HJ; Zoller P
    Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1005-10. PubMed ID: 20080573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kerr Enhanced Backaction Cooling in Magnetomechanics.
    Zoepfl D; Juan ML; Diaz-Naufal N; Schneider CMF; Deeg LF; Sharafiev A; Metelmann A; Kirchmair G
    Phys Rev Lett; 2023 Jan; 130(3):033601. PubMed ID: 36763378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An analytical model for the detection of levitated nanoparticles in optomechanics.
    Rahman ATMA; Frangeskou AC; Barker PF; Morley GW
    Rev Sci Instrum; 2018 Feb; 89(2):023109. PubMed ID: 29495859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS.
    Reserbat-Plantey A; Schädler KG; Gaudreau L; Navickaite G; Güttinger J; Chang D; Toninelli C; Bachtold A; Koppens FH
    Nat Commun; 2016 Jan; 7():10218. PubMed ID: 26742541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cavity optomechanics with a Bose-Einstein condensate.
    Brennecke F; Ritter S; Donner T; Esslinger T
    Science; 2008 Oct; 322(5899):235-8. PubMed ID: 18787133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics.
    Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-classical light generated by quantum-noise-driven cavity optomechanics.
    Brooks DW; Botter T; Schreppler S; Purdy TP; Brahms N; Stamper-Kurn DM
    Nature; 2012 Aug; 488(7412):476-80. PubMed ID: 22895194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cavity cooling a single charged levitated nanosphere.
    Millen J; Fonseca PZ; Mavrogordatos T; Monteiro TS; Barker PF
    Phys Rev Lett; 2015 Mar; 114(12):123602. PubMed ID: 25860743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
    Fonseca PZ; Aranas EB; Millen J; Monteiro TS; Barker PF
    Phys Rev Lett; 2016 Oct; 117(17):173602. PubMed ID: 27824467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor.
    Hu Y; Kingsley-Smith JJ; Nikkhou M; Sabin JA; Rodríguez-Fortuño FJ; Xu X; Millen J
    Nat Commun; 2023 May; 14(1):2638. PubMed ID: 37149678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macroscopic Quantum Superposition in Cavity Optomechanics.
    Liao JQ; Tian L
    Phys Rev Lett; 2016 Apr; 116(16):163602. PubMed ID: 27152802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum capacitance mediated carbon nanotube optomechanics.
    Blien S; Steger P; Hüttner N; Graaf R; Hüttel AK
    Nat Commun; 2020 Apr; 11(1):1636. PubMed ID: 32242140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State.
    Guo J; Norte R; Gröblacher S
    Phys Rev Lett; 2019 Nov; 123(22):223602. PubMed ID: 31868423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals.
    Li H; Chen Y; Noh J; Tadesse S; Li M
    Nat Commun; 2012; 3():1091. PubMed ID: 23033067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.