BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31826314)

  • 21. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture.
    Lotz JC; Cheal EJ; Hayes WC
    Osteoporos Int; 1995; 5(4):252-61. PubMed ID: 7492864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight.
    Lang TF; Leblanc AD; Evans HJ; Lu Y
    J Bone Miner Res; 2006 Aug; 21(8):1224-30. PubMed ID: 16869720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping.
    Li W; Kornak J; Harris T; Keyak J; Li C; Lu Y; Cheng X; Lang T
    Bone; 2009 Apr; 44(4):596-602. PubMed ID: 19130910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone mineral loss at the proximal femur in acute spinal cord injury.
    Edwards WB; Schnitzer TJ; Troy KL
    Osteoporos Int; 2013 Sep; 24(9):2461-9. PubMed ID: 23468075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural patterns of the proximal femur in relation to age and hip fracture risk in women.
    Carballido-Gamio J; Harnish R; Saeed I; Streeper T; Sigurdsson S; Amin S; Atkinson EJ; Therneau TM; Siggeirsdottir K; Cheng X; Melton LJ; Keyak JH; Gudnason V; Khosla S; Harris TB; Lang TF
    Bone; 2013 Nov; 57(1):290-9. PubMed ID: 23981658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry.
    Cheng XG; Lowet G; Boonen S; Nicholson PH; Brys P; Nijs J; Dequeker J
    Bone; 1997 Mar; 20(3):213-8. PubMed ID: 9071471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical Activity for Strengthening Fracture Prone Regions of the Proximal Femur.
    Fuchs RK; Kersh ME; Carballido-Gamio J; Thompson WR; Keyak JH; Warden SJ
    Curr Osteoporos Rep; 2017 Feb; 15(1):43-52. PubMed ID: 28133707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction in proximal femoral strength due to long-duration spaceflight.
    Keyak JH; Koyama AK; LeBlanc A; Lu Y; Lang TF
    Bone; 2009 Mar; 44(3):449-53. PubMed ID: 19100348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone mineral density averaged over a region of interest on femur is affected by age-related change of bone geometry.
    Luo Y
    Osteoporos Int; 2018 Jun; 29(6):1419-1425. PubMed ID: 29508039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of eldecalcitol, an active vitamin D analog, on hip structure and biomechanical properties: 3D assessment by clinical CT.
    Ito M; Nakamura T; Fukunaga M; Shiraki M; Matsumoto T
    Bone; 2011 Sep; 49(3):328-34. PubMed ID: 21605716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Femur strength predictions by nonlinear homogenized voxel finite element models reflect the microarchitecture of the femoral neck.
    Iori G; Peralta L; Reisinger A; Heyer F; Wyers C; van den Bergh J; Pahr D; Raum K
    Med Eng Phys; 2020 May; 79():60-66. PubMed ID: 32291201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tibial Bone Strength is Enhanced in the Jump Leg of Collegiate-Level Jumping Athletes: A Within-Subject Controlled Cross-Sectional Study.
    Weatherholt AM; Warden SJ
    Calcif Tissue Int; 2016 Feb; 98(2):129-39. PubMed ID: 26543032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CTXA hip: the effect of partial volume correction on volumetric bone mineral density data for cortical and trabecular bone.
    Liu Y; Wang L; Su Y; Brown K; Yang R; Zhang Y; Duanmu Y; Guo Z; Zhang W; Yan C; Yan D; Cheng X
    Arch Osteoporos; 2020 Mar; 15(1):50. PubMed ID: 32193671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study.
    Yang L; Udall WJ; McCloskey EV; Eastell R
    Osteoporos Int; 2014 Jan; 25(1):251-63. PubMed ID: 23719860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
    Carpenter RD; Beaupré GS; Lang TF; Orwoll ES; Carter DR;
    J Bone Miner Res; 2005 Sep; 20(9):1533-42. PubMed ID: 16059625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of periosteal apposition in the head and neck of femur after menopause in Chinese women with high risk for hip fractures - A cross-sectional study with QCT.
    Su Y; Wang L; Liu X; Yang M; Yi C; Liu Y; Huang P; Guo Z; Yu A; Cheng X; Wu X; Blake GM; Engelke K
    Bone; 2020 Oct; 139():115545. PubMed ID: 32730940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Throwing induces substantial torsional adaptation within the midshaft humerus of male baseball players.
    Warden SJ; Bogenschutz ED; Smith HD; Gutierrez AR
    Bone; 2009 Nov; 45(5):931-41. PubMed ID: 19647807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur.
    Schileo E; Pitocchi J; Falcinelli C; Taddei F
    Bone; 2020 Jul; 136():115348. PubMed ID: 32240847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of the proximal humerus to physical activity: A within-subject controlled study in baseball players.
    Warden SJ; Carballido-Gamio J; Avin KG; Kersh ME; Fuchs RK; Krug R; Bice RJ
    Bone; 2019 Apr; 121():107-115. PubMed ID: 30634064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes.
    Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H
    J Biomech; 2018 Jul; 76():136-143. PubMed ID: 29921524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.