These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31826621)

  • 1. Origins of Superlubricity Promoted by Hydrated Multivalent Ions.
    Han T; Zhang C; Li J; Yuan S; Chen X; Zhang J; Luo J
    J Phys Chem Lett; 2020 Jan; 11(1):184-190. PubMed ID: 31826621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions.
    Han T; Zhang C; Luo J
    Langmuir; 2018 Sep; 34(38):11281-11291. PubMed ID: 30175911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscale Superlubricity of Hydrated Anions in the Boundary Lubrication Regime.
    Han T; Zhao M; Sun C; Zhao R; Xu W; Zhang S; Singh S; Luo J; Zhang C
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42094-42103. PubMed ID: 37625155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme-Pressure Superlubricity of Polymer Solution Enhanced with Hydrated Salt Ions.
    Li S; Bai P; Li Y; Jia W; Li X; Meng Y; Ma L; Tian Y
    Langmuir; 2020 Jun; 36(24):6765-6774. PubMed ID: 32460491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes.
    Han T; Yi S; Zhang C; Li J; Chen X; Luo J; Banquy X
    J Colloid Interface Sci; 2020 Nov; 579():479-488. PubMed ID: 32622097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions.
    Ge X; Li J; Zhang C; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6568-6574. PubMed ID: 30657308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration lubrication: exploring a new paradigm.
    Gaisinskaya A; Ma L; Silbert G; Sorkin R; Tairy O; Goldberg R; Kampf N; Klein J
    Faraday Discuss; 2012; 156():217-33; discussion 293-309. PubMed ID: 23285630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlubricity behavior with phosphoric acid-water network induced by rubbing.
    Li J; Zhang C; Luo J
    Langmuir; 2011 Aug; 27(15):9413-7. PubMed ID: 21682338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superlubricity of Zwitterionic Bottlebrush Polymers in the Presence of Multivalent Ions.
    Adibnia V; Olszewski M; De Crescenzo G; Matyjaszewski K; Banquy X
    J Am Chem Soc; 2020 Sep; 142(35):14843-14847. PubMed ID: 32790294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excellent Water Lubrication Additives for Silicon Nitride To Achieve Superlubricity under Extreme Conditions.
    Lin B; Ding M; Sui T; Cui Y; Yan S; Liu X
    Langmuir; 2019 Nov; 35(46):14861-14869. PubMed ID: 31663750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive.
    Ge X; Li J; Zhang C; Luo J
    Langmuir; 2018 Mar; 34(12):3578-3587. PubMed ID: 29505262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of hydration lubrication.
    Ma L; Gaisinskaya-Kipnis A; Kampf N; Klein J
    Nat Commun; 2015 Jan; 6():6060. PubMed ID: 25585501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of friction stress of ethylene glycol by attached hydrogen ions.
    Li J; Zhang C; Deng M; Luo J
    Sci Rep; 2014 Nov; 4():7226. PubMed ID: 25428584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts.
    Ge X; Chai Z; Shi Q; Liu Y; Tang J; Wang W
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lubrication by charged polymers.
    Raviv U; Giasson S; Kampf N; Gohy JF; Jérôme R; Klein J
    Nature; 2003 Sep; 425(6954):163-5. PubMed ID: 12968175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frictional Dissipation Pathways Mediated by Hydrated Alkali Metal Ions.
    Gaisinskaya-Kipnis A; Ma L; Kampf N; Klein J
    Langmuir; 2016 May; 32(19):4755-64. PubMed ID: 27089022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of biological liquid superlubricity of Brasenia schreberi mucilage.
    Liu P; Liu Y; Yang Y; Chen Z; Li J; Luo J
    Langmuir; 2014 Apr; 30(13):3811-6. PubMed ID: 24645739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.