These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31827201)
1. Silver vacancy concentration engineering leading to the ultralow lattice thermal conductivity and improved thermoelectric performance of Ag Zhong Y; Luo Y; Li X; Cui J Sci Rep; 2019 Dec; 9(1):18879. PubMed ID: 31827201 [TBL] [Abstract][Full Text] [Related]
2. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe. Roychowdhury S; Jana MK; Pan J; Guin SN; Sanyal D; Waghmare UV; Biswas K Angew Chem Int Ed Engl; 2018 Apr; 57(15):4043-4047. PubMed ID: 29488301 [TBL] [Abstract][Full Text] [Related]
3. Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe. Karthikeyan V; Oo SL; Surjadi JU; Li X; Theja VCS; Kannan V; Lau SC; Lu Y; Lam KH; Roy VAL ACS Appl Mater Interfaces; 2021 Dec; 13(49):58701-58711. PubMed ID: 34851624 [TBL] [Abstract][Full Text] [Related]
4. Improvement of thermoelectric performance of copper-deficient compounds Cu Ren T; Ying P; Cai G; Li X; Han Z; Min L; Cui J RSC Adv; 2018 Jul; 8(48):27163-27170. PubMed ID: 35539978 [TBL] [Abstract][Full Text] [Related]
5. Band Structure and Phonon Transport Engineering Realizing Remarkable Improvement in Thermoelectric Performance of Cu Qu L; Yang C; Luo Y; Du Z; Li C; Cui J ACS Appl Mater Interfaces; 2022 Oct; 14(40):45628-45635. PubMed ID: 36190823 [TBL] [Abstract][Full Text] [Related]
6. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458 [TBL] [Abstract][Full Text] [Related]
7. Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge Chen S; Bai H; Li J; Pan W; Jiang X; Li Z; Chen Z; Yan Y; Su X; Wu J; Uher C; Tang X ACS Appl Mater Interfaces; 2020 Apr; 12(17):19664-19673. PubMed ID: 32255612 [TBL] [Abstract][Full Text] [Related]
8. Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Chen Z; Jian Z; Li W; Chang Y; Ge B; Hanus R; Yang J; Chen Y; Huang M; Snyder GJ; Pei Y Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397364 [TBL] [Abstract][Full Text] [Related]
9. Rational Design of Cu Vacancies and Antisite Defects for Boosting the Thermoelectric Properties of CuGaTe Tang Y; Liu K; Liao L; Wu J; Su X; Zhang Q; Poudeu PFP; Tang X ACS Appl Mater Interfaces; 2024 Jul; 16(30):39495-39505. PubMed ID: 39024645 [TBL] [Abstract][Full Text] [Related]
10. Highly Converged Valence Bands and Ultralow Lattice Thermal Conductivity for High-Performance SnTe Thermoelectrics. Sarkar D; Ghosh T; Banik A; Roychowdhury S; Sanyal D; Biswas K Angew Chem Int Ed Engl; 2020 Jun; 59(27):11115-11122. PubMed ID: 32212363 [TBL] [Abstract][Full Text] [Related]
11. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems. Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031 [TBL] [Abstract][Full Text] [Related]
12. Achieving Enhanced Thermoelectric Performance in (SnTe) Liu X; Zhang B; Chen Y; Wu H; Wang H; Yang M; Wang G; Xu J; Zhou X; Han G ACS Appl Mater Interfaces; 2020 Oct; 12(40):44805-44814. PubMed ID: 32902958 [TBL] [Abstract][Full Text] [Related]
13. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in SnTe by Alloying with MnSb Peng P; Wang C; Cui S; Wang C; Chen J; Hao M; Huang X; Wang X; Wang Y; Cheng Z; Wang J ACS Appl Mater Interfaces; 2023 Sep; 15(38):45016-45025. PubMed ID: 37702038 [TBL] [Abstract][Full Text] [Related]
14. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
15. N-type thermoelectric Ag Yang C; Luo Y; Li X; Cui J RSC Adv; 2021 Jan; 11(6):3732-3739. PubMed ID: 35424318 [TBL] [Abstract][Full Text] [Related]
16. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Chen Z; Ge B; Li W; Lin S; Shen J; Chang Y; Hanus R; Snyder GJ; Pei Y Nat Commun; 2017 Jan; 8():13828. PubMed ID: 28051063 [TBL] [Abstract][Full Text] [Related]
17. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652 [TBL] [Abstract][Full Text] [Related]
18. Ultralow Thermal Conductivity and High Thermoelectric Performance of N-type Bi Zhang J; Ming H; Li D; Qin X; Zhang J; Huang L; Song C; Wang L ACS Appl Mater Interfaces; 2020 Aug; 12(33):37155-37163. PubMed ID: 32814385 [TBL] [Abstract][Full Text] [Related]
19. Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe Deng S; Jiang X; Chen L; Qi N; Tang X; Chen Z ACS Appl Mater Interfaces; 2021 Jan; 13(1):868-877. PubMed ID: 33393286 [TBL] [Abstract][Full Text] [Related]
20. High-Performance Thermoelectric α-Ag Tang Y; Yu Y; Zhao N; Liu K; Chen H; Stoumpos CC; Shi Y; Chen S; Yu L; Wu J; Zhang Q; Su X; Tang X Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202208281. PubMed ID: 35821569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]