These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3182729)
1. Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture. Melville SB; Michel TA; Macy JM J Bacteriol; 1988 Nov; 170(11):5305-11. PubMed ID: 3182729 [TBL] [Abstract][Full Text] [Related]
2. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium. Melville SB; Michel TA; Macy JM J Bacteriol; 1988 Nov; 170(11):5298-304. PubMed ID: 3141385 [TBL] [Abstract][Full Text] [Related]
3. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. Wallace RJ J Gen Microbiol; 1978 Jul; 107(1):45-52. PubMed ID: 103995 [TBL] [Abstract][Full Text] [Related]
6. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. Yang YT; Bennett GN; San KY Metab Eng; 2001 Apr; 3(2):115-23. PubMed ID: 11289788 [TBL] [Abstract][Full Text] [Related]
7. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl Microbiol; 1975 Dec; 30(6):916-21. PubMed ID: 174490 [TBL] [Abstract][Full Text] [Related]
8. Dilution rates influence ammonia-assimilating enzyme activities and cell parameters of Selenomonas ruminantium strain D in continuous (glucose-limited) culture. Patterson JA; Chalova VI; Hespell RB; Ricke SC J Appl Microbiol; 2010 Jan; 108(1):357-65. PubMed ID: 19702858 [TBL] [Abstract][Full Text] [Related]
10. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. Yamada T; Carlsson J J Bacteriol; 1975 Oct; 124(1):55-61. PubMed ID: 1176435 [TBL] [Abstract][Full Text] [Related]
11. Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion. Yang YT; San KY; Bennett GN Metab Eng; 1999 Apr; 1(2):141-52. PubMed ID: 10935927 [TBL] [Abstract][Full Text] [Related]
12. Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis. Townson SM; Upcroft JA; Upcroft P Mol Biochem Parasitol; 1996 Aug; 79(2):183-93. PubMed ID: 8855555 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the Clostridium thermoaceticum pyruvate:ferredoxin oxidoreductase: evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyropyrosphate radical. Menon S; Ragsdale SW Biochemistry; 1997 Jul; 36(28):8484-94. PubMed ID: 9214293 [TBL] [Abstract][Full Text] [Related]
14. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. Furdui C; Ragsdale SW J Biol Chem; 2000 Sep; 275(37):28494-9. PubMed ID: 10878009 [TBL] [Abstract][Full Text] [Related]
15. [pH-dependence of the structural and functional properties of lactate dehydrogenase (M4). Indirect cooperativity in lactate dehydrogenase]. Saburova EA; Markovich DS; Gol'dshteĭn BN Mol Biol (Mosk); 1977; 11(2):332-44. PubMed ID: 37431 [TBL] [Abstract][Full Text] [Related]
16. Flavodoxin:quinone reductase (FqrB): a redox partner of pyruvate:ferredoxin oxidoreductase that reversibly couples pyruvate oxidation to NADPH production in Helicobacter pylori and Campylobacter jejuni. St Maurice M; Cremades N; Croxen MA; Sisson G; Sancho J; Hoffman PS J Bacteriol; 2007 Jul; 189(13):4764-73. PubMed ID: 17468253 [TBL] [Abstract][Full Text] [Related]
17. Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells. Alcazar O; Tiedge M; Lenzen S Biochem J; 2000 Dec; 352 Pt 2(Pt 2):373-80. PubMed ID: 11085930 [TBL] [Abstract][Full Text] [Related]
18. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Chen M; Wolin MJ Appl Environ Microbiol; 1977 Dec; 34(6):756-9. PubMed ID: 596874 [TBL] [Abstract][Full Text] [Related]
19. Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP. Willquist K; van Niel EW Metab Eng; 2010 May; 12(3):282-90. PubMed ID: 20060925 [TBL] [Abstract][Full Text] [Related]
20. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic? Gstraunthaler G; Seppi T; Pfaller W Cell Physiol Biochem; 1999; 9(3):150-72. PubMed ID: 10494029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]