These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 31827290)

  • 21. Advanced Strategies in Metal-Organic Frameworks for CO
    Usman M; Iqbal N; Noor T; Zaman N; Asghar A; Abdelnaby MM; Galadima A; Helal A
    Chem Rec; 2022 Jul; 22(7):e202100230. PubMed ID: 34757694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementation of a Core-Shell Design Approach for Constructing MOFs for CO
    He Y; Boone P; Lieber AR; Tong Z; Das P; Hornbostel KM; Wilmer CE; Rosi NL
    ACS Appl Mater Interfaces; 2023 May; 15(19):23337-23342. PubMed ID: 37141279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sr(II) and Ba(II) Alkaline Earth Metal-Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application.
    Király N; Capková D; Gyepes R; Vargová N; Kazda T; Bednarčík J; Yudina D; Zelenka T; Čudek P; Zeleňák V; Sharma A; Meynen V; Hornebecq V; Straková Fedorková A; Almáši M
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36677987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-stable metal-organic frameworks (MOFs): rational construction and carbon dioxide capture.
    Xiao C; Tian J; Chen Q; Hong M
    Chem Sci; 2024 Jan; 15(5):1570-1610. PubMed ID: 38303941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of Bridging Molecular and Process Modeling to Design Optimal Adsorbents for Large-Scale CO
    Vega LF; Bahamon D
    Acc Chem Res; 2024 Jan; 57(2):188-197. PubMed ID: 38156949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selectivity of MOFs and Silica Nanoparticles in CO
    Bucura F; Spiridon SI; Ionete RE; Marin F; Zaharioiu AM; Armeanu A; Badea SL; Botoran OR; Ionete EI; Niculescu VC; Constantinescu M
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do New MOFs Perform Better for CO
    Avci G; Erucar I; Keskin S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41567-41579. PubMed ID: 32818375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of the Membrane Process of CO
    Miroshnichenko D; Shalygin M; Bazhenov S
    Membranes (Basel); 2023 Jul; 13(8):. PubMed ID: 37623753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strategies to Enhance Carbon Dioxide Capture in Metal-Organic Frameworks.
    Piscopo CG; Loebbecke S
    Chempluschem; 2020 Mar; 85(3):538-547. PubMed ID: 32196141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Augmenting the Carbon Dioxide Uptake and Selectivity of Metal-Organic Frameworks by Metal Substitution: Molecular Simulations of LMOF-202.
    Agrawal A; Agrawal M; Suh D; Fei S; Alizadeh A; Ma Y; Matsuda R; Hsu WL; Daiguji H
    ACS Omega; 2020 Jul; 5(28):17193-17198. PubMed ID: 32715204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oxycoal process with cryogenic oxygen supply.
    Kather A; Scheffknecht G
    Naturwissenschaften; 2009 Sep; 96(9):993-1010. PubMed ID: 19495717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unexpected carbon dioxide inclusion in water-saturated pores of metal-organic frameworks with potential for highly selective capture of CO2.
    Kim D; Lim HK; Ro H; Kim H; Lee H
    Chemistry; 2015 Jan; 21(3):1125-9. PubMed ID: 25404494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of CO
    Rehman A; Farrukh S; Hussain A; Fan X; Pervaiz E
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36214-36225. PubMed ID: 31713140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal-Organic Frameworks in Humid Flue Gas.
    Lyu H; Chen OI; Hanikel N; Hossain MI; Flaig RW; Pei X; Amin A; Doherty MD; Impastato RK; Glover TG; Moore DR; Yaghi OM
    J Am Chem Soc; 2022 Feb; 144(5):2387-2396. PubMed ID: 35080872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming Metastable CO
    Dinakar B; Forse AC; Jiang HZH; Zhu Z; Lee JH; Kim EJ; Parker ST; Pollak CJ; Siegelman RL; Milner PJ; Reimer JA; Long JR
    J Am Chem Soc; 2021 Sep; 143(37):15258-15270. PubMed ID: 34491725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixed-Metal MOF-Derived Carbon Sponges for Oil Absorption.
    González CMO; de Monserrat Navarro Tellez A; Kharisov BI; Hernández JMG; Quezada TES; González LT; de la Fuente IG
    Recent Pat Nanotechnol; 2022; 16(2):128-138. PubMed ID: 35297341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Template-Mediated Synthesis of Hierarchically Porous Metal-Organic Frameworks for Efficient CO
    Qiu T; Gao S; Fu Y; Xu D; Kong D
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach.
    Yazaydin AO; Snurr RQ; Park TH; Koh K; Liu J; Levan MD; Benin AI; Jakubczak P; Lanuza M; Galloway DB; Low JJ; Willis RR
    J Am Chem Soc; 2009 Dec; 131(51):18198-9. PubMed ID: 19954193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.