These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31827291)

  • 1. Phonon heat transfer across a vacuum through quantum fluctuations.
    Fong KY; Li HK; Zhao R; Yang S; Wang Y; Zhang X
    Nature; 2019 Dec; 576(7786):243-247. PubMed ID: 31827291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.
    Chiloyan V; Garg J; Esfarjani K; Chen G
    Nat Commun; 2015 Apr; 6():6755. PubMed ID: 25849305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-reciprocal energy transfer through the Casimir effect.
    Xu Z; Gao X; Bang J; Jacob Z; Li T
    Nat Nanotechnol; 2022 Feb; 17(2):148-152. PubMed ID: 34903895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant heat transfer in the crossover regime between conduction and radiation.
    Kloppstech K; Könne N; Biehs SA; Rodriguez AW; Worbes L; Hellmann D; Kittel A
    Nat Commun; 2017 Feb; 8():. PubMed ID: 28198369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-Casimir coupling can induce thermal resonance of adsorbed liquid layers in a nanogap.
    Chen W; Nagayama G
    Phys Chem Chem Phys; 2022 May; 24(19):11758-11769. PubMed ID: 35506712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial thermal resonance in an SiC-SiC nanogap with various atomic surface terminations.
    Li X; Chen W; Nagayama G
    Nanoscale; 2023 May; 15(19):8603-8610. PubMed ID: 37099403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long Propagating Polaritonic Heat Transfer: Shaping Radiation to Conduction.
    Li S; Wang J; Wen Y; Shin S
    ACS Nano; 2024 Jun; 18(22):14779-14789. PubMed ID: 38783699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanophotonic Heat Exchanger for Enhanced Near-Field Radiative Heat Transfer.
    Tsurimaki Y; Benzaouia M; Fan S
    Nano Lett; 2024 Apr; 24(15):4521-4527. PubMed ID: 38565218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic phonon tunneling and heat transport due to evanescent electric fields.
    Prunnila M; Meltaus J
    Phys Rev Lett; 2010 Sep; 105(12):125501. PubMed ID: 20867653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon heat transport in cavity-mediated optomechanical nanoresonators.
    Yang C; Wei X; Sheng J; Wu H
    Nat Commun; 2020 Sep; 11(1):4656. PubMed ID: 32938953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state electron spin lifetime limited by phononic vacuum modes.
    Astner T; Gugler J; Angerer A; Wald S; Putz S; Mauser NJ; Trupke M; Sumiya H; Onoda S; Isoya J; Schmiedmayer J; Mohn P; Majer J
    Nat Mater; 2018 Apr; 17(4):313-317. PubMed ID: 29434307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-Polariton Mediated Thermal Radiation and Heat Transfer among Molecules and Macroscopic Bodies: Nonlocal Electromagnetic Response at Mesoscopic Scales.
    Venkataram PS; Hermann J; Tkatchenko A; Rodriguez AW
    Phys Rev Lett; 2018 Jul; 121(4):045901. PubMed ID: 30095944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-mode heat conduction by photons.
    Meschke M; Guichard W; Pekola JP
    Nature; 2006 Nov; 444(7116):187-90. PubMed ID: 17093446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confined and interface optical phonon emission in GaN/InGaN double barrier quantum well heterostructures.
    Mohamed A; Park K; Bayram C; Dutta M; Stroscio M
    PLoS One; 2019; 14(4):e0214971. PubMed ID: 30998702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensive measures of luminescence in GaN/InGaN heterostructures.
    Hsiao JJ; Huang YJ; Chen HI; Jiang JA; Wang JC; Wu YF; Nee TE
    PLoS One; 2019; 14(9):e0222928. PubMed ID: 31550270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations.
    Zhernenkov M; Bolmatov D; Soloviov D; Zhernenkov K; Toperverg BP; Cunsolo A; Bosak A; Cai YQ
    Nat Commun; 2016 May; 7():11575. PubMed ID: 27175859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.
    Kothari K; Maldovan M
    Sci Rep; 2017 Jul; 7(1):5625. PubMed ID: 28717137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field-dependent phonon spectrum and heat conduction in ferroelectrics.
    Wooten BL; Iguchi R; Tang P; Kang JS; Uchida KI; Bauer GEW; Heremans JP
    Sci Adv; 2023 Feb; 9(5):eadd7194. PubMed ID: 36724270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dimensional heat conduction in surface phonon polariton waveguide.
    Pei Y; Chen L; Jeon W; Liu Z; Chen R
    Nat Commun; 2023 Dec; 14(1):8242. PubMed ID: 38086822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.