BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31827742)

  • 1. Experimental Study on Creep Characteristics of Microdefect Articular Cartilages in the Damaged Early Stage.
    Gong H; Men Y; Yang X; Li X; Zhang C
    J Healthc Eng; 2019; 2019():8526436. PubMed ID: 31827742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study on the Mechanical Properties of Porcine Cartilage with Microdefect under Rolling Load.
    Men YT; Li XM; Chen L; Fu H
    J Healthc Eng; 2017; 2017():2306160. PubMed ID: 29065577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress relaxation behaviors of articular cartilages in porcine temporomandibular joint.
    Tanaka E; Pelayo F; Kim N; Lamela MJ; Kawai N; Fernández-Canteli A
    J Biomech; 2014 May; 47(7):1582-7. PubMed ID: 24680920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creep behavior of the intact and meniscectomy knee joints.
    Kazemi M; Li LP; Savard P; Buschmann MD
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1351-8. PubMed ID: 21783145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation and creep quasilinear viscoelastic models for normal articular cartilage.
    Simon BR; Coats RS; Woo SL
    J Biomech Eng; 1984 May; 106(2):159-64. PubMed ID: 6738021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of creep and creep-recovery on ratcheting strain of articular cartilage under cyclic compression.
    Gao L; Liu D; Gao H; Lv L; Zhang C
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():988-997. PubMed ID: 30423787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determine the equilibrium mechanical properties of articular cartilage from the short-term indentation response.
    Chen X; Zimmerman BK; Lu XL
    J Biomech; 2015 Jan; 48(1):176-80. PubMed ID: 25528721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth-dependent ratcheting strains of young and adult articular cartilages by experiments and predictions.
    Gao LL; Lin XL; Liu DD; Chen L; Zhang CQ; Gao H
    Biomed Eng Online; 2019 Jul; 18(1):85. PubMed ID: 31362738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation.
    Richard F; Villars M; Thibaud S
    J Mech Behav Biomed Mater; 2013 Aug; 24():41-52. PubMed ID: 23684353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full Regional Creep Displacement Map of Articular Cartilage Based on Nanoindentation Array.
    Liu J; Huang B; Ma Z; Xu S; Zhao H; Ren L
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3546-3555. PubMed ID: 37115745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does prior sustained compression make cartilage-on-bone more vulnerable to trauma?
    Kim W; Thambyah A; Broom N
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):637-45. PubMed ID: 22534322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [An experimental study of viscoelastic properties of articular-cartilage of patella].
    Weng X; Zhang J; Zhang J; Qiu G; Mao H
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1999 Feb; 21(1):53-6. PubMed ID: 12569641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical, biochemical, and morphological topography of ovine knee cartilage.
    Risch M; Easley JT; McCready EG; Troyer KL; Johnson JW; Gadomski BC; McGilvray KC; Kisiday JD; Nelson BB
    J Orthop Res; 2021 Apr; 39(4):780-787. PubMed ID: 32833239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelasticity of the articular cartilage surface in early osteoarthritis.
    Desrochers J; Amrein MW; Matyas JR
    Osteoarthritis Cartilage; 2012 May; 20(5):413-421. PubMed ID: 22313971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.
    Taffetani M; Gottardi R; Gastaldi D; Raiteri R; Vena P
    Med Eng Phys; 2014 Jul; 36(7):850-8. PubMed ID: 24814573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.