BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 31827828)

  • 1. Species-specific effects of passive warming in an Antarctic moss system.
    Prather HM; Casanova-Katny A; Clements AF; Chmielewski MW; Balkan MA; Shortlidge EE; Rosenstiel TN; Eppley SM
    R Soc Open Sci; 2019 Nov; 6(11):190744. PubMed ID: 31827828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum.
    Shortlidge EE; Eppley SM; Kohler H; Rosenstiel TN; Zúñiga GE; Casanova-Katny A
    Ann Bot; 2017 Jan; 119(1):27-38. PubMed ID: 27794516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. It Is Hot in the Sun: Antarctic Mosses Have High Temperature Optima for Photosynthesis Despite Cold Climate.
    Perera-Castro AV; Waterman MJ; Turnbull JD; Ashcroft MB; McKinley E; Watling JR; Bramley-Alves J; Casanova-Katny A; Zuniga G; Flexas J; Robinson SA
    Front Plant Sci; 2020; 11():1178. PubMed ID: 32922412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities.
    Zúñiga-González P; Zúñiga GE; Pizarro M; Casanova-Katny A
    Biol Res; 2016 Jan; 49():6. PubMed ID: 26823072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of lichen communities to 18 years of natural and experimental warming.
    Alatalo JM; Jägerbrand AK; Chen S; Molau U
    Ann Bot; 2017 Jul; 120(1):159-170. PubMed ID: 28651333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic.
    Chown SL; Convey P
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2307-31. PubMed ID: 17553768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental factors influencing fine-scale distribution of Antarctica's only endemic insect.
    Potts LJ; Gantz JD; Kawarasaki Y; Philip BN; Gonthier DJ; Law AD; Moe L; Unrine JM; McCulley RL; Lee RE; Denlinger DL; Teets NM
    Oecologia; 2020 Dec; 194(4):529-539. PubMed ID: 32725300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological Interactions and Simulated Climate Change Modulates the Ecophysiological Performance of Colobanthus quitensis in the Antarctic Ecosystem.
    Torres-Díaz C; Gallardo-Cerda J; Lavin P; Oses R; Carrasco-Urra F; Atala C; Acuña-Rodríguez IS; Convey P; Molina-Montenegro MA
    PLoS One; 2016; 11(10):e0164844. PubMed ID: 27776181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identity of plant, lichen and moss species connects with microbial abundance and soil functioning in Maritime Antarctica.
    Benavent-González A; Delgado-Baquerizo M; Fernández-Brun L; Singh BK; Maestre FT; Sancho LG
    Plant Soil; 2018 Aug; 429(1-2):35-52. PubMed ID: 30078912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct uptake of soil nitrogen by mosses.
    Ayres E; van der Wal R; Sommerkorn M; Bardgett RD
    Biol Lett; 2006 Jun; 2(2):286-8. PubMed ID: 17148384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-dependent effects of herbivory on moss communities in Arctic wetlands: A 25-year experiment.
    Liu C; Gauthier G; Gignac C; Lévesque E; Rochefort L
    Ecol Evol; 2024 Apr; 14(4):e11272. PubMed ID: 38665892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of plant taxonomic position on soil nematode communities in Antarctica.
    Zhang A; Song H; Liu Z; Cui H; Ding H; Chen S; Xiao S; An L; Cardoso P
    Conserv Biol; 2024 Apr; ():e14264. PubMed ID: 38563105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscale is key to model current and future Maritime Antarctic vegetation.
    Matos P; Rocha B; Pinho P; Miranda V; Pina P; Goyanes G; Vieira G
    Sci Total Environ; 2024 Jun; 946():174171. PubMed ID: 38917897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reviewing bryophyte-microorganism association: insights into environmental optimization.
    Dangar BV; Chavada P; Bhatt PJ; Raviya R
    Front Microbiol; 2024; 15():1407391. PubMed ID: 38946907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Metatranscriptome of Bacterial Communities of Two Moss Species Thriving in Different Environments-Terrestrial and Aquatic.
    Baev V; Gecheva G; Apostolova E; Gozmanova M; Yahubyan G
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Usnic acid, as a biotic factor, changes the ploidy level in mosses.
    Goga M; Ručová D; Kolarčik V; Sabovljević M; Bačkor M; Lang I
    Ecol Evol; 2018 Mar; 8(5):2781-2787. PubMed ID: 29531694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of endozoochory in upland geese
    Lázaro XA; Mackenzie R; Jiménez JE
    Ecol Evol; 2021 Jul; 11(14):9191-9197. PubMed ID: 34306615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do Bryophyte Elemental Concentrations Explain Their Morphological Traits?
    Fernández-Martínez M; Corbera J; Cano-Rocabayera O; Sabater F; Preece C
    Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in nutrient availability substantially alter bacteria and extracellular enzymatic activities in Antarctic soils.
    Nair GR; Kooverjee BB; de Scally S; Cowan DA; Makhalanyane TP
    FEMS Microbiol Ecol; 2024 May; 100(6):. PubMed ID: 38697936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula.
    Purcell AM; Dijkstra P; Hungate BA; McMillen K; Schwartz E; van Gestel N
    ISME J; 2023 Dec; 17(12):2290-2302. PubMed ID: 37872274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.