These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31827853)

  • 1. The utilization of red mud waste as industrial honeycomb catalyst for selective catalytic reduction of NO.
    Huangfu L; Abubakar A; Li C; Li Y; Wang C; Yu J; Gao S
    R Soc Open Sci; 2019 Nov; 6(11):191183. PubMed ID: 31827853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The industrial feasibility of low temperature DeNO
    Li C; Yu J; He Y; Yu C; Li P; Wang C; Huang F; Gao S
    RSC Adv; 2018 May; 8(33):18260-18265. PubMed ID: 35541112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified red mud catalyst for the selective catalytic reduction of nitrogen oxides: Impact mechanism of cerium precursors on surface physicochemical properties.
    Gao C; Yang G; Wang D; Gong Z; Zhang X; Wang B; Peng Y; Li J; Lu C; Crittenden J
    Chemosphere; 2020 Oct; 257():127215. PubMed ID: 32505950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into modified red mud for the selective catalytic reduction of NO
    Gong Z; Ma J; Wang D; Niu S; Yan B; Shi Q; Lu C; Crittenden J
    J Hazard Mater; 2020 Jul; 394():122536. PubMed ID: 32217422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient catalytic ozonation degradation of levofloxacin by facile hydrogenation-modified red mud wastes.
    Yan C; Cheng Z; Zhang X; Zhang Y; Chen X; Zeng G; Xu H
    Environ Pollut; 2023 Oct; 334():122149. PubMed ID: 37433366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid-treated waste red mud as an efficient catalyst for catalytic fast copyrolysis of lignin and polyproylene and ozone-catalytic conversion of toluene.
    Ryu S; Lee J; Reddy Kannapu HP; Jang SH; Kim Y; Jang H; Ha JM; Jung SC; Park YK
    Environ Res; 2020 Dec; 191():110149. PubMed ID: 32882239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of Fe and Al from red mud by a novel fractional precipitation process.
    Yu F; Huangfu L; Wang C; Li C; Yu J; Li W; Gao S
    Environ Sci Pollut Res Int; 2020 May; 27(13):14642-14653. PubMed ID: 32052331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot-scale evaluation of a novel TiO
    Jung H; Park E; Kim M; Jurng J
    Waste Manag; 2017 Mar; 61():283-287. PubMed ID: 27899246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TG-FTIR-Py-GCMS analysis and catalytic pyrolysis mechanism of textile waste by red mud catalyst for liquid fuel production.
    Liu Z; Yang Y; Xie M; Cheng M; Yang R; Huang Z; Zhou T; Zhao Y; Yang J; Die Q; Li B
    Sci Total Environ; 2024 Nov; 952():175874. PubMed ID: 39218112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the addition of vanadium to Pt/TiO
    Kim GJ; Kwon DW; Shin JH; Kim KW; Hong SC
    Environ Technol; 2019 Aug; 40(19):2588-2600. PubMed ID: 30513069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and Applications of Red Mud, an Aluminum Industry Waste Material, in the Construction and Building Industries, as well as Catalysis.
    Al-Fakih A; Mohamed Nor Z; Inayath Basha S; Nasiruzzaman Shaikh M; Ahmad S; Al-Osta MA; Aziz MA
    Chem Rec; 2023 May; 23(5):e202300039. PubMed ID: 37078876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of comprehensive utilization of red mud.
    Mi H; Yi L; Wu Q; Xia J; Zhang B
    Waste Manag Res; 2022 Nov; 40(11):1594-1607. PubMed ID: 35875958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titania-Samarium-Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH
    Xu Q; Fang Z; Chen Y; Guo Y; Guo Y; Wang L; Wang Y; Zhang J; Zhan W
    Environ Sci Technol; 2020 Feb; 54(4):2530-2538. PubMed ID: 31990529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NO
    Jiang H; Wang Q; Wang H; Chen Y; Zhang M
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26817-26826. PubMed ID: 27661447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NH
    Zhu L; Zhong Z; Xue J; Xu Y; Wang C; Wang L
    J Environ Sci (China); 2018 Mar; 65():306-316. PubMed ID: 29548402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VxMn(4-x)Mo3Ce3/Ti catalysts for selective catalytic reduction of NO by NH
    Zhang D; Ma Z; Wang B; Zhu T; Weng D; Wu X; Wang H; Li G; Zhou J
    J Environ Sci (China); 2020 Feb; 88():145-154. PubMed ID: 31862056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially Confined Tuning the Interfacial Synergistic Catalysis in Mesochannels toward Selective Catalytic Reduction.
    Ran X; Li M; Wang K; Qian X; Fan J; Sun Y; Luo W; Teng W; Zhang WX; Yang J
    ACS Appl Mater Interfaces; 2019 May; 11(21):19242-19251. PubMed ID: 31050880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heating activated red mud catalytic ozonation for degradation nitrobenzene from aqueous solution: performance and influence of preparation factors.
    Qi F; Li H; Xu B; Sun D
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6984-90. PubMed ID: 25924359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic hydrodechlorination of tetrachloroethylene over red mud.
    Ordóñez S; Sastre H; Díez FV
    J Hazard Mater; 2001 Jan; 81(1-2):103-14. PubMed ID: 11118686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH
    Qi L; Sun Z; Tang Q; Wang J; Huang T; Sun C; Gao F; Tang C; Dong L
    J Hazard Mater; 2020 Sep; 396():122459. PubMed ID: 32302885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.