BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3182824)

  • 41. Origin of octameric creatine kinases.
    Ellington WR; Roux K; Pineda AO
    FEBS Lett; 1998 Mar; 425(1):75-8. PubMed ID: 9541010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tetrameric and octameric lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Structure and stability of the two active forms.
    Dams T; Ostendorp R; Ott M; Rutkat K; Jaenicke R
    Eur J Biochem; 1996 Aug; 240(1):274-9. PubMed ID: 8925837
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactivation and refolding of reassociated dimers of rabbit muscle creatine kinase.
    Park YD; Huang K; Zhou HM
    J Protein Chem; 2000 Apr; 19(3):185-91. PubMed ID: 10981810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification and characterization of human mitochondrial creatine kinase. A single enzyme form.
    Grace AM; Perryman MB; Roberts R
    J Biol Chem; 1983 Dec; 258(24):15346-54. PubMed ID: 6654916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compartmented coupling of chicken heart mitochondrial creatine kinase to the nucleotide translocase requires the outer mitochondrial membrane.
    Brooks SP; Suelter CH
    Arch Biochem Biophys; 1987 Aug; 257(1):144-53. PubMed ID: 2820307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Properties of creatine kinase from skeletal muscle mitochondria].
    Lipskaia TIu; Rybina IV
    Biokhimiia; 1987 Apr; 52(4):690-700. PubMed ID: 3593795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues.
    Wendt S; Schlattner U; Wallimann T
    J Biol Chem; 2003 Jan; 278(2):1125-30. PubMed ID: 12401781
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Conditions for reciprocal conversion of oligomeric forms of heart mitochondrial creatine kinase].
    Lipskaia TIu; Kedishvili NIu; Kalenova ME
    Biokhimiia; 1985 Oct; 50(10):1571-81. PubMed ID: 4074771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation.
    Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R
    Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding.
    Schlattner U; Wallimann T
    J Biol Chem; 2000 Jun; 275(23):17314-20. PubMed ID: 10748055
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzyme kinetics of a highly purified mitochondrial creatine kinase in comparison with cytosolic forms.
    Basson CT; Grace AM; Roberts R
    Mol Cell Biochem; 1985 Jul; 67(2):151-9. PubMed ID: 4047027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effect of oligomerization on the properties of essential SH-groups of mitochondrial creatine kinase].
    Fedosov SN; Belousova LV
    Biokhimiia; 1988 Apr; 53(4):550-64. PubMed ID: 3395637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitochondrial creatine kinase from human heart muscle: purification and characterization of the crystallized isoenzyme.
    Blum HE; Deus B; Gerok W
    J Biochem; 1983 Oct; 94(4):1247-57. PubMed ID: 6418727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The in vitro kinetics of mitochondrial and cytosolic creatine kinase determined by saturation transfer 31P-NMR.
    van Dorsten FA; Furter R; Bijkerk M; Wallimann T; Nicolay K
    Biochim Biophys Acta; 1996 May; 1274(1-2):59-66. PubMed ID: 8645695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The quaternary structure of bovine heart mitochondrial creatine kinase.
    Lipskaya TYu ; Moiseeva NS; Trofimova ME
    Biochem Int; 1989 Jun; 18(6):1161-71. PubMed ID: 2751680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of ubiquitous mitochondrial creatine kinase expression in HeLa cells by an antisense oligodeoxynucleotide.
    Enjolras N; Godinot C
    Mol Cell Biochem; 1997 Feb; 167(1-2):113-25. PubMed ID: 9059988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immunocytochemical localization of creatine kinase M in canine myocardial cells: most creatine kinase M is distributed in the A-band.
    Otsu N; Hirata M; Tuboi S; Miyazawa K
    J Histochem Cytochem; 1989 Oct; 37(10):1465-70. PubMed ID: 2778305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alternative ribosomal initiation gives rise to chicken brain-type creatine kinase isoproteins with heterogeneous amino termini.
    Soldati T; Schäfer BW; Perriard JC
    J Biol Chem; 1990 Mar; 265(8):4498-506. PubMed ID: 2307674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional aspects of the X-ray structure of mitochondrial creatine kinase: a molecular physiology approach.
    Schlattner U; Forstner M; Eder M; Stachowiak O; Fritz-Wolf K; Wallimann T
    Mol Cell Biochem; 1998 Jul; 184(1-2):125-40. PubMed ID: 9746317
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (Drosophila), sea urchin (Psammechinus miliaris) and man.
    Wyss M; Maughan D; Wallimann T
    Biochem J; 1995 Jul; 309 ( Pt 1)(Pt 1):255-61. PubMed ID: 7619066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.