These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31828375)

  • 1. A fluorescence/colorimetric dual-mode sensing strategy for miRNA based on graphene oxide.
    Shin B; Park JS; Chun HS; Yoon S; Kim WK; Lee J
    Anal Bioanal Chem; 2020 Jan; 412(1):233-242. PubMed ID: 31828375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.
    Li W; Hou T; Wu M; Li F
    Talanta; 2016; 148():116-21. PubMed ID: 26653431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR Green I fluorescence platform.
    Zhu D; Zhang L; Ma W; Lu S; Xing X
    Biosens Bioelectron; 2015 Mar; 65():152-8. PubMed ID: 25461151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA.
    Lee J; Na HK; Lee S; Kim WK
    Mikrochim Acta; 2021 Dec; 189(1):35. PubMed ID: 34940914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A graphene oxide fluorescent sensing platform for sensitive and specific detecting biomarker of radiation-resistant nasopharyngeal carcinoma.
    Yang Z; Qin L; Yang D; Hu Q; Jin J
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2383-2386. PubMed ID: 31196713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction.
    Dong H; Zhang J; Ju H; Lu H; Wang S; Jin S; Hao K; Du H; Zhang X
    Anal Chem; 2012 May; 84(10):4587-93. PubMed ID: 22510208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection.
    Huang R; Liao Y; Zhou X; Xing D
    Anal Chim Acta; 2015 Aug; 888():162-72. PubMed ID: 26320972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection.
    Tu Y; Li W; Wu P; Zhang H; Cai C
    Anal Chem; 2013 Feb; 85(4):2536-42. PubMed ID: 23320509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO).
    Ryoo SR; Lee J; Yeo J; Na HK; Kim YK; Jang H; Lee JH; Han SW; Lee Y; Kim VN; Min DH
    ACS Nano; 2013 Jul; 7(7):5882-91. PubMed ID: 23767402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive Colorimetric Detection of MicroRNA Based on Target Catalyzed Double-arm Hairpin DNA Assembling.
    Tian R; Zheng X
    Anal Sci; 2016; 32(7):751-5. PubMed ID: 27396656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Cell Real-Time miRNAs Sensing Based on Nanomotors.
    Esteban-Fernández de Ávila B; Martín A; Soto F; Lopez-Ramirez MA; Campuzano S; Vásquez-Machado GM; Gao W; Zhang L; Wang J
    ACS Nano; 2015 Jul; 9(7):6756-64. PubMed ID: 26035455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. rkDNA-graphene oxide as a simple probe for the rapid detection of miRNA21.
    Choi MH; Ravi Kumara GS; Seo YJ
    Bioorg Med Chem Lett; 2020 Sep; 30(17):127398. PubMed ID: 32738995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification.
    Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K
    Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplified MicroRNA Detection and Intracellular Imaging Based on an Autonomous and Catalytic Assembly of DNAzyme.
    Yang L; Wu Q; Chen Y; Liu X; Wang F; Zhou X
    ACS Sens; 2019 Jan; 4(1):110-117. PubMed ID: 30562005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive detection of lung cancer-associated miRNAs by multiple primer-mediated rolling circle amplification coupled with a graphene oxide fluorescence-based (MPRCA-GO) sensor.
    Khoothiam K; Treerattrakoon K; Iempridee T; Luksirikul P; Dharakul T; Japrung D
    Analyst; 2019 Jul; 144(14):4180-4187. PubMed ID: 31123738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction.
    Yang L; Liu C; Ren W; Li Z
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6450-3. PubMed ID: 23182299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide for rapid microRNA detection.
    Lu Z; Zhang L; Deng Y; Li S; He N
    Nanoscale; 2012 Sep; 4(19):5840-2. PubMed ID: 22895793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Enzyme-Free DNA Circuit-Assisted Graphene Oxide Enhanced Fluorescence Anisotropy Assay for MicroRNA Detection with Improved Sensitivity and Selectivity.
    Zhen SJ; Xiao X; Li CH; Huang CZ
    Anal Chem; 2017 Sep; 89(17):8766-8771. PubMed ID: 28737379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate.
    Xing XJ; Liu XG; Yue-He ; Luo QY; Tang HW; Pang DW
    Biosens Bioelectron; 2012; 37(1):61-7. PubMed ID: 22613226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric detection of microRNA based on DNAzyme and nuclease-assisted catalytic hairpin assembly signal amplification.
    Zhang H; Wang K; Bu S; Li Z; Ju C; Wan J
    Mol Cell Probes; 2018 Apr; 38():13-18. PubMed ID: 29458177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.