BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31828448)

  • 1. Corynebacterium glutamicum whiA plays roles in cell division, cell envelope formation, and general cell physiology.
    Lee JH; Jeong H; Kim Y; Lee HS
    Antonie Van Leeuwenhoek; 2020 May; 113(5):629-641. PubMed ID: 31828448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation.
    Lee DS; Kim Y; Lee HS
    Microbiology (Reading); 2017 Feb; 163(2):131-143. PubMed ID: 27902442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corynebacterium glutamicum WhcD interacts with WhiA to exert a regulatory effect on cell division genes.
    Lee DS; Kim P; Kim ES; Kim Y; Lee HS
    Antonie Van Leeuwenhoek; 2018 May; 111(5):641-648. PubMed ID: 28988281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-specific oxidant diamide downregulates whiA gene of Corynebacterium glutamicum, thereby suppressing cell division and metabolism.
    Jeong H; Lee JH; Kim Y; Lee HS
    Res Microbiol; 2020 Dec; 171(8):331-340. PubMed ID: 32750493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Conserved DNA Binding Protein WhiA Influences Chromosome Segregation in Bacillus subtilis.
    Bohorquez LC; Surdova K; Jonker MJ; Hamoen LW
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition.
    Tzvetkov M; Klopprogge C; Zelder O; Liebl W
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1659-1673. PubMed ID: 12855718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of novel genes involved in Corynebacteriales cell envelope biogenesis using Corynebacterium glutamicum as a model.
    de Sousa-d'Auria C; Constantinesco-Becker F; Constant P; Tropis M; Houssin C
    PLoS One; 2020; 15(12):e0240497. PubMed ID: 33383576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum.
    Li H; Xu D; Tan X; Huang D; Huang Y; Zhao G; Hu X; Wang X
    Microbiol Res; 2023 Feb; 267():127260. PubMed ID: 36463830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of LytR-CpsA-Psr Proteins on Cell Wall Biosynthesis in Corynebacterium glutamicum.
    Baumgart M; Schubert K; Bramkamp M; Frunzke J
    J Bacteriol; 2016 Nov; 198(22):3045-3059. PubMed ID: 27551018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains.
    Takeno S; Murata N; Kura M; Takasaki M; Hayashi M; Ikeda M
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10603-10612. PubMed ID: 30276713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential dynamic interdependence of FtsZ and SepF for Z-ring and septum formation in Corynebacterium glutamicum.
    Sogues A; Martinez M; Gaday Q; Ben Assaya M; Graña M; Voegele A; VanNieuwenhze M; England P; Haouz A; Chenal A; Trépout S; Duran R; Wehenkel AM; Alzari PM
    Nat Commun; 2020 Apr; 11(1):1641. PubMed ID: 32242019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae.
    Gebhardt H; Meniche X; Tropis M; Krämer R; Daffé M; Morbach S
    Microbiology (Reading); 2007 May; 153(Pt 5):1424-1434. PubMed ID: 17464056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conserved actinobacterial transcriptional regulator FtsR controls expression of ftsZ and further target genes and influences growth and cell division in Corynebacterium glutamicum.
    Kraxner KJ; Polen T; Baumgart M; Bott M
    BMC Microbiol; 2019 Aug; 19(1):179. PubMed ID: 31382874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum.
    Letek M; Ordóñez E; Vaquera J; Margolin W; Flärdh K; Mateos LM; Gil JA
    J Bacteriol; 2008 May; 190(9):3283-92. PubMed ID: 18296522
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Ikeda M; Nagashima T; Nakamura E; Kato R; Ohshita M; Hayashi M; Takeno S
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan.
    Lea-Smith DJ; Pyke JS; Tull D; McConville MJ; Coppel RL; Crellin PK
    J Biol Chem; 2007 Apr; 282(15):11000-8. PubMed ID: 17308303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum.
    Ogino H; Teramoto H; Inui M; Yukawa H
    Mol Microbiol; 2008 Feb; 67(3):597-608. PubMed ID: 18086211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cg1246, a new player in mycolic acid biosynthesis in
    de Sousa-d'Auria C; Constantinesco F; Bayan N; Constant P; Tropis M; Daffé M; Graille M; Houssin C
    Microbiology (Reading); 2022 Apr; 168(4):. PubMed ID: 35394419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trehalose biosynthetic gene
    Park JC; Jeong H; Kim Y; Lee HS
    Microbiology (Reading); 2022 Jan; 168(1):. PubMed ID: 35040429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis.
    Gande R; Gibson KJ; Brown AK; Krumbach K; Dover LG; Sahm H; Shioyama S; Oikawa T; Besra GS; Eggeling L
    J Biol Chem; 2004 Oct; 279(43):44847-57. PubMed ID: 15308633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.