BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31828530)

  • 1. Carbon export is facilitated by sea urchins transforming kelp detritus.
    Filbee-Dexter K; Pedersen MF; Fredriksen S; Norderhaug KM; Rinde E; Kristiansen T; Albretsen J; Wernberg T
    Oecologia; 2020 Jan; 192(1):213-225. PubMed ID: 31828530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grazers extend blue carbon transfer by slowing sinking speeds of kelp detritus.
    Wernberg T; Filbee-Dexter K
    Sci Rep; 2018 Nov; 8(1):17180. PubMed ID: 30464260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detrital carbon production and export in high latitude kelp forests.
    Pedersen MF; Filbee-Dexter K; Norderhaug KM; Fredriksen S; Frisk NL; Fagerli CW; Wernberg T
    Oecologia; 2020 Jan; 192(1):227-239. PubMed ID: 31834515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins.
    Filbee-Dexter K; Scheibling RE
    Ecology; 2017 Jan; 98(1):253-264. PubMed ID: 28052391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement of pulsed resource subsidies from kelp forests to deep fjords.
    Filbee-Dexter K; Wernberg T; Norderhaug KM; Ramirez-Llodra E; Pedersen MF
    Oecologia; 2018 May; 187(1):291-304. PubMed ID: 29605871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea urchins mediate the availability of kelp detritus to benthic consumers.
    Yorke CE; Page HM; Miller RJ
    Proc Biol Sci; 2019 Jul; 286(1906):20190846. PubMed ID: 31288702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detached kelps from distant sources are a food subsidy for sea urchins.
    Vanderklift MA; Wernberg T
    Oecologia; 2008 Aug; 157(2):327-35. PubMed ID: 18491144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained productivity and respiration of degrading kelp detritus in the shallow benthos: Detached or broken, but not dead.
    Frontier N; de Bettignies F; Foggo A; Davoult D
    Mar Environ Res; 2021 Apr; 166():105277. PubMed ID: 33592375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detrital supply suppresses deforestation to maintain healthy kelp forest ecosystems.
    Rennick M; DiFiore BP; Curtis J; Reed DC; Stier AC
    Ecology; 2022 May; 103(5):e3673. PubMed ID: 35233769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the efficacy of sea urchin exclusion methods for restoring kelp.
    Sharma R; Swearer SE; Morris RL; Strain EMA
    Mar Environ Res; 2021 Aug; 170():105439. PubMed ID: 34365122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial light at night and warming impact grazing rates and gonad index of the sea urchin
    Caley A; Marzinelli EM; Byrne M; Mayer-Pinto M
    Proc Biol Sci; 2024 Apr; 291(2021):20240415. PubMed ID: 38628122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of removing sea urchins (Strongylocentrotus droebachiensis): Stability of the barren state and succession of kelp forest recovery in the east Atlantic.
    Leinaas HP; Christie H
    Oecologia; 1996 Mar; 105(4):524-536. PubMed ID: 28307146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunflower sea star predation on urchins can facilitate kelp forest recovery.
    Galloway AWE; Gravem SA; Kobelt JN; Heady WN; Okamoto DK; Sivitilli DM; Saccomanno VR; Hodin J; Whippo R
    Proc Biol Sci; 2023 Feb; 290(1993):20221897. PubMed ID: 36809801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic.
    Smale DA; Pessarrodona A; King N; Burrows MT; Yunnie A; Vance T; Moore P
    Sci Rep; 2020 Jul; 10(1):12161. PubMed ID: 32699214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs.
    Kriegisch N; Reeves S; Johnson CR; Ling SD
    PLoS One; 2016; 11(12):e0168333. PubMed ID: 28030596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.
    Ling SD; Kriegisch N; Woolley B; Reeves SE
    Ecology; 2019 Feb; 100(2):e02577. PubMed ID: 30707451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic.
    Rinde E; Christie H; Fagerli CW; Bekkby T; Gundersen H; Norderhaug KM; Hjermann DØ
    PLoS One; 2014; 9(6):e100222. PubMed ID: 24949954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments reveal limited top-down control of key herbivores in southern California kelp forests.
    Dunn RP; Hovel KA
    Ecology; 2019 Mar; 100(3):e02625. PubMed ID: 30648729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can multitrophic interactions and ocean warming influence large-scale kelp recovery?
    Christie H; Gundersen H; Rinde E; Filbee-Dexter K; Norderhaug KM; Pedersen T; Bekkby T; Gitmark JK; Fagerli CW
    Ecol Evol; 2019 Mar; 9(5):2847-2862. PubMed ID: 30891221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of light and temperature on detritus degradation rates for kelp species with contrasting thermal affinities.
    Frontier N; Mulas M; Foggo A; Smale DA
    Mar Environ Res; 2022 Jan; 173():105529. PubMed ID: 34800869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.