BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31828931)

  • 1. Soluble electron acceptors affect bioluminescence from Shewanella woodyi.
    Theberge AL; Alsabia SM; Mortensen CT; Blair AG; Wendel NM; Biffinger JC
    Luminescence; 2020 May; 35(3):427-433. PubMed ID: 31828931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between in vivo bioluminescence and extracellular electron transfer in Shewanella woodyi via charge and discharge.
    Tian X; Zhao F; You L; Wu X; Zheng Z; Wu R; Jiang Y; Sun S
    Phys Chem Chem Phys; 2017 Jan; 19(3):1746-1750. PubMed ID: 28054061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Marine Bacterium Shewanella woodyi Produces C
    Hayek M; Baraquet C; Lami R; Blache Y; Molmeret M
    Microb Ecol; 2020 May; 79(4):865-881. PubMed ID: 31741007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.
    Yang Y; Xiang Y; Xia C; Wu WM; Sun G; Xu M
    Bioresour Technol; 2014 Jul; 164():270-5. PubMed ID: 24862003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylate Reductase of an Anaerobic Electron Transport Chain of the Marine Bacterium Shewanella woodyi.
    Bertsova YV; Serebryakova MV; Bogachev VA; Baykov AA; Bogachev AV
    Biochemistry (Mosc); 2024 Apr; 89(4):701-710. PubMed ID: 38831506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroanalysis of Shewanella oneidensis MR-1.
    Shumyantseva VV; Shebanova AS; Chalenko YM; Voeikova TA; Kirpichnikov MP; Shaitan KV; Debabov VG
    Dokl Biochem Biophys; 2015; 464():325-8. PubMed ID: 26518560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide.
    Zheng Z; Xiao Y; Wu R; Mølager Christensen HE; Zhao F; Zhang J
    Biosens Bioelectron; 2019 Oct; 142():111571. PubMed ID: 31445395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Study on the Extracellular Electron Transfer Pathway from Shewanella Strain Hac319 to Electrodes.
    Takeuchi R; Sugimoto Y; Kitazumi Y; Shirai O; Ogawa J; Kano K
    Anal Sci; 2018 Oct; 34(10):1177-1182. PubMed ID: 29910222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic control of redox reactions inside Escherichia coli using a genetic module.
    Baruch M; Tejedor-Sanz S; Su L; Ajo-Franklin CM
    PLoS One; 2021; 16(11):e0258380. PubMed ID: 34793478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wiring Bacterial Electron Flow for Sensitive Whole-Cell Amperometric Detection of Riboflavin.
    Si RW; Yang Y; Yu YY; Han S; Zhang CL; Sun DZ; Zhai DD; Liu X; Yong YC
    Anal Chem; 2016 Nov; 88(22):11222-11228. PubMed ID: 27750415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Bioelectrochemistry; 2018 Feb; 119():172-179. PubMed ID: 29032328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp.
    Neal AL; Dublin SN; Taylor J; Bates DJ; Burns JL; Apkarian R; DiChristina TJ
    Biomacromolecules; 2007 Jan; 8(1):166-74. PubMed ID: 17206803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1.
    Maier TM; Myers CR
    BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors.
    Li R; Tiedje JM; Chiu C; Worden RM
    Environ Sci Technol; 2012 Mar; 46(5):2813-20. PubMed ID: 22324484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking Electron Uptake from a Cathode into
    Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical synthesis of formic acid from CO
    Le QAT; Kim HG; Kim YH
    Enzyme Microb Technol; 2018 Sep; 116():1-5. PubMed ID: 29887011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistep hopping and extracellular charge transfer in microbial redox chains.
    Pirbadian S; El-Naggar MY
    Phys Chem Chem Phys; 2012 Oct; 14(40):13802-8. PubMed ID: 22797729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.