These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 31829097)
1. Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by nitric oxide generation. Zhang X; Shi J; Chen S; Dong Y; Zhang L; Midgley AC; Kong D; Wang S Regen Med; 2019 Dec; 14(12):1089-1105. PubMed ID: 31829097 [No Abstract] [Full Text] [Related]
2. Rapid endothelialization and controlled smooth muscle regeneration by electrospun heparin-loaded polycaprolactone/gelatin hybrid vascular grafts. Shi J; Chen S; Wang L; Zhang X; Gao J; Jiang L; Tang D; Zhang L; Midgley A; Kong D; Wang S J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2040-2049. PubMed ID: 30556953 [TBL] [Abstract][Full Text] [Related]
3. Regulation of macrophage polarization and promotion of endothelialization by NO generating and PEG-YIGSR modified vascular graft. Tang D; Chen S; Hou D; Gao J; Jiang L; Shi J; Liang Q; Kong D; Wang S Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():1-11. PubMed ID: 29519417 [TBL] [Abstract][Full Text] [Related]
4. Vascular Remodeling Process of Heparin-Conjugated Poly(ε-Caprolactone) Scaffold in a Rat Abdominal Aorta Replacement Model. Xu Z; Gu Y; Li J; Feng Z; Guo L; Tong Z; Ye L; Wang C; Wang R; Geng X; Wang C; Zhang J J Vasc Res; 2018; 55(6):338-349. PubMed ID: 30485863 [TBL] [Abstract][Full Text] [Related]
5. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961 [TBL] [Abstract][Full Text] [Related]
7. Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds. Jiang YC; Jiang L; Huang A; Wang XF; Li Q; Turng LS Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():901-908. PubMed ID: 27987787 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts. Li P; Jin D; Dou J; Wang L; Wang Y; Jin X; Han X; Kang IK; Yuan J; Shen J; Yin M Int J Biol Macromol; 2021 Oct; 189():516-527. PubMed ID: 34450147 [TBL] [Abstract][Full Text] [Related]
9. Composite vascular grafts with high cell infiltration by co-electrospinning. Tan Z; Wang H; Gao X; Liu T; Tan Y Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():369-377. PubMed ID: 27287133 [TBL] [Abstract][Full Text] [Related]
10. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Zheng W; Wang Z; Song L; Zhao Q; Zhang J; Li D; Wang S; Han J; Zheng XL; Yang Z; Kong D Biomaterials; 2012 Apr; 33(10):2880-91. PubMed ID: 22244694 [TBL] [Abstract][Full Text] [Related]
11. Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Pan Y; Zhou X; Wei Y; Zhang Q; Wang T; Zhu M; Li W; Huang R; Liu R; Chen J; Fan G; Wang K; Kong D; Zhao Q Sci Rep; 2017 Jun; 7(1):3615. PubMed ID: 28620160 [TBL] [Abstract][Full Text] [Related]
12. In situ blood vessel regeneration using neuropeptide substance P-conjugated small-diameter vascular grafts. Shafiq M; Wang L; Zhi D; Zhang Q; Wang K; Wang L; Kim DH; Kong D; Kim SH J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1669-1683. PubMed ID: 30315717 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Kabirian F; Brouki Milan P; Zamanian A; Heying R; Mozafari M Acta Biomater; 2019 Jul; 92():82-91. PubMed ID: 31059835 [TBL] [Abstract][Full Text] [Related]
14. Rapid in situ endothelialization of a small diameter vascular graft with catalytic nitric oxide generation and promoted endothelial cell adhesion. Wang Y; Chen S; Pan Y; Gao J; Tang D; Kong D; Wang S J Mater Chem B; 2015 Dec; 3(47):9212-9222. PubMed ID: 32263136 [TBL] [Abstract][Full Text] [Related]
15. An in vitro regenerated functional human endothelium on a nanofibrous electrospun scaffold. Zhang X; Thomas V; Xu Y; Bellis SL; Vohra YK Biomaterials; 2010 May; 31(15):4376-81. PubMed ID: 20199808 [TBL] [Abstract][Full Text] [Related]
16. The surrounding tissue contributes to smooth muscle cells' regeneration and vascularization of small diameter vascular grafts. Liu J; Qin Y; Wu Y; Sun Z; Li B; Jing H; Zhang C; Li C; Leng X; Wang Z; Kong D Biomater Sci; 2019 Feb; 7(3):914-925. PubMed ID: 30511718 [TBL] [Abstract][Full Text] [Related]
17. Functional Modification of Electrospun Poly(ε-caprolactone) Vascular Grafts with the Fusion Protein VEGF-HGFI Enhanced Vascular Regeneration. Wang K; Zhang Q; Zhao L; Pan Y; Wang T; Zhi D; Ma S; Zhang P; Zhao T; Zhang S; Li W; Zhu M; Zhu Y; Zhang J; Qiao M; Kong D ACS Appl Mater Interfaces; 2017 Apr; 9(13):11415-11427. PubMed ID: 28276249 [TBL] [Abstract][Full Text] [Related]
18. Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration. Shafiq M; Jung Y; Kim SH J Biomed Mater Res A; 2016 Jun; 104(6):1352-71. PubMed ID: 26822178 [TBL] [Abstract][Full Text] [Related]
19. Endothelialization of electrospun polycaprolactone (PCL) small caliber vascular grafts spun from different polymer blends. Pfeiffer D; Stefanitsch C; Wankhammer K; Müller M; Dreyer L; Krolitzki B; Zernetsch H; Glasmacher B; Lindner C; Lass A; Schwarz M; Muckenauer W; Lang I J Biomed Mater Res A; 2014 Dec; 102(12):4500-9. PubMed ID: 24532056 [TBL] [Abstract][Full Text] [Related]
20. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Wei Y; Wu Y; Zhao R; Zhang K; Midgley AC; Kong D; Li Z; Zhao Q Biomaterials; 2019 Jun; 204():13-24. PubMed ID: 30875515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]