These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31829181)

  • 1. iTRAQ-based proteomic analysis reveals the mechanisms of Botrytis cinerea controlled with Wuyiencin.
    Shi L; Ge B; Wang J; Liu B; Ma J; Wei Q; Zhang K
    BMC Microbiol; 2019 Dec; 19(1):280. PubMed ID: 31829181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea.
    Zhang W; Cao Y; Li H; Rasmey AM; Zhang K; Shi L; Ge B
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):398. PubMed ID: 38940906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide transcriptomic analysis of the response of Botrytis cinerea to wuyiencin.
    Shi L; Liu B; Wei Q; Ge B; Zhang K
    PLoS One; 2020; 15(4):e0224643. PubMed ID: 32348310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action.
    Wang J; Xia XM; Wang HY; Li PP; Wang KY
    Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.
    Soylu EM; Kurt S; Soylu S
    Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological control of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum.
    Metz C; Oerke EC; Dehne HW
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):353-9. PubMed ID: 12701443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry.
    Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea.
    Chen H; Xiao X; Wang J; Wu L; Zheng Z; Yu Z
    Biotechnol Lett; 2008 May; 30(5):919-23. PubMed ID: 18165869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Analysis of
    Cui K; He L; Zhao Y; Mu W; Lin J; Liu F
    Phytopathology; 2021 Aug; 111(8):1313-1326. PubMed ID: 33325724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea.
    Sui Y; Ma Z; Meng X
    J Sci Food Agric; 2019 Mar; 99(5):2622-2628. PubMed ID: 30417388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea).
    Debieu D; Bach J; Hugon M; Malosse C; Leroux P
    Pest Manag Sci; 2001 Nov; 57(11):1060-7. PubMed ID: 11721524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grey mould disease of strawberry in northern Germany: causal agents, fungicide resistance and management strategies.
    Weber RWS; Hahn M
    Appl Microbiol Biotechnol; 2019 Feb; 103(4):1589-1597. PubMed ID: 30610288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights.
    Abdel-Rahim IR; Abo-Elyousr KAM
    Microbiol Res; 2018; 212-213():1-9. PubMed ID: 29853163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of postharvest grey mould decay of nectarine by tea polyphenol combined with tea saponin.
    Yang XP; Jiang XD; Chen JJ; Zhang SS
    Lett Appl Microbiol; 2013 Dec; 57(6):502-9. PubMed ID: 23909749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent).
    Aqueveque P; Céspedes CL; Becerra J; Aranda M; Sterner O
    Food Chem Toxicol; 2017 Nov; 109(Pt 2):1048-1054. PubMed ID: 28528973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould).
    Walker AS; Micoud A; Rémuson F; Grosman J; Gredt M; Leroux P
    Pest Manag Sci; 2013 Jun; 69(6):667-78. PubMed ID: 23576292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes.
    Saito S; Suzuki S; Takayanagi T
    Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.