These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 3182940)

  • 1. A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos.
    Nickells RW; Browder LW
    J Cell Biol; 1988 Nov; 107(5):1901-9. PubMed ID: 3182940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing the heat shock response of Xenopus laevis embryos.
    Nickells RW; Browder LW; Wang TI
    Biochem Cell Biol; 1989 Oct; 67(10):687-95. PubMed ID: 2590525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The induction of pyruvate kinase synthesis by heat shock in Xenopus laevis embryos.
    Marsden M; Nickells RW; Kapoor M; Browder LW
    Dev Genet; 1993; 14(1):51-7. PubMed ID: 8482011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analyses to identify selective inhibitors of glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme.
    Danshina PV; Qu W; Temple BR; Rojas RJ; Miley MJ; Machius M; Betts L; O'Brien DA
    Mol Hum Reprod; 2016 Jun; 22(6):410-26. PubMed ID: 26921398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis.
    Heikkila JJ; Kloc M; Bury J; Schultz GA; Browder LW
    Dev Biol; 1985 Feb; 107(2):483-9. PubMed ID: 3972166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mind the GAP: Purification and characterization of urea resistant GAPDH during extreme dehydration.
    Hadj-Moussa H; Wade SC; Childers CL; Storey KB
    Proteins; 2021 May; 89(5):544-557. PubMed ID: 33368595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of differential gene expression and mRNA stability in the developmental regulation of the hsp 30 gene family in heat-shocked Xenopus laevis embryos.
    Ohan NW; Heikkila JJ
    Dev Genet; 1995; 17(2):176-84. PubMed ID: 7586758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons.
    Yuan A; Mills RG; Bamburg JR; Bray JJ
    Cell Mol Neurobiol; 1999 Dec; 19(6):733-44. PubMed ID: 10456234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of members of the HSP30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos.
    Tam Y; Heikkila JJ
    Dev Genet; 1995; 17(4):331-9. PubMed ID: 8641051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism.
    Janero DR; Hreniuk D; Sharif HM
    Am J Physiol; 1994 Jan; 266(1 Pt 1):C179-88. PubMed ID: 8304415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos.
    Lang L; Miskovic D; Fernando P; Heikkila JJ
    Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the ontogeny and interactions of glyceraldehyde-3-phosphate dehydrogenase.
    Reid S; Masters C
    Mech Ageing Dev; 1986 Aug; 35(3):209-19. PubMed ID: 3773571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly.
    Nakagawa T; Hirano Y; Inomata A; Yokota S; Miyachi K; Kaneda M; Umeda M; Furukawa K; Omata S; Horigome T
    J Biol Chem; 2003 May; 278(22):20395-404. PubMed ID: 12651855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; NĂ©meti B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii.
    Sakai K; Hasumi K; Endo A
    Eur J Biochem; 1990 Oct; 193(1):195-202. PubMed ID: 2226438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro effect of metal ions on the activity of two amphibian glyceraldehyde-3-phosphate dehydrogenases: potential metal binding sites.
    Mounaji K; Vlassi M; Erraiss NE; Wegnez M; Serrano A; Soukri A
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jun; 135(2):241-54. PubMed ID: 12798935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyl phosphatase activity of NO-inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH): a potential mechanism for uncoupling glycolysis from ATP generation in NO-producing cells.
    Albina JE; Mastrofrancesco B; Reichner JS
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):5-9. PubMed ID: 10377238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis.
    Saunders PA; Chalecka-Franaszek E; Chuang DM
    J Neurochem; 1997 Nov; 69(5):1820-8. PubMed ID: 9349524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.