These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 31829411)
1. An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Harbison A; Fadda E Glycobiology; 2020 May; 30(6):407-414. PubMed ID: 31829411 [TBL] [Abstract][Full Text] [Related]
2. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024 [TBL] [Abstract][Full Text] [Related]
3. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Mizushima T; Yagi H; Takemoto E; Shibata-Koyama M; Isoda Y; Iida S; Masuda K; Satoh M; Kato K Genes Cells; 2011 Nov; 16(11):1071-80. PubMed ID: 22023369 [TBL] [Abstract][Full Text] [Related]
5. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
6. Sequence-to-structure dependence of isolated IgG Fc complex biantennary N-glycans: a molecular dynamics study. Harbison AM; Brosnan LP; Fenlon K; Fadda E Glycobiology; 2019 Jan; 29(1):94-103. PubMed ID: 30325416 [TBL] [Abstract][Full Text] [Related]
7. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Raju TS Curr Opin Immunol; 2008 Aug; 20(4):471-8. PubMed ID: 18606225 [TBL] [Abstract][Full Text] [Related]
8. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan. Falconer DJ; Subedi GP; Marcella AM; Barb AW ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589 [TBL] [Abstract][Full Text] [Related]
11. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. Wada R; Matsui M; Kawasaki N MAbs; 2019; 11(2):350-372. PubMed ID: 30466347 [TBL] [Abstract][Full Text] [Related]
12. Modulating IgG effector function by Fc glycan engineering. Li T; DiLillo DJ; Bournazos S; Giddens JP; Ravetch JV; Wang LX Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3485-3490. PubMed ID: 28289219 [TBL] [Abstract][Full Text] [Related]
13. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors. Isoda Y; Yagi H; Satoh T; Shibata-Koyama M; Masuda K; Satoh M; Kato K; Iida S PLoS One; 2015; 10(10):e0140120. PubMed ID: 26444434 [TBL] [Abstract][Full Text] [Related]
14. Impact of Fc N-glycan sialylation on IgG structure. Zhang Z; Shah B; Richardson J MAbs; 2019; 11(8):1381-1390. PubMed ID: 31411531 [TBL] [Abstract][Full Text] [Related]
15. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Ferrara C; Grau S; Jäger C; Sondermann P; Brünker P; Waldhauer I; Hennig M; Ruf A; Rufer AC; Stihle M; Umaña P; Benz J Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12669-74. PubMed ID: 21768335 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Effector Functions Due to Antibody Defucosylation Depend on the Effector Cell Fcγ Receptor Profile. Bruggeman CW; Dekkers G; Bentlage AEH; Treffers LW; Nagelkerke SQ; Lissenberg-Thunnissen S; Koeleman CAM; Wuhrer M; van den Berg TK; Rispens T; Vidarsson G; Kuijpers TW J Immunol; 2017 Jul; 199(1):204-211. PubMed ID: 28566370 [TBL] [Abstract][Full Text] [Related]
17. Antibody-receptor interactions mediate antibody-dependent cellular cytotoxicity. Sun Y; Izadi S; Callahan M; Deperalta G; Wecksler AT J Biol Chem; 2021 Jul; 297(1):100826. PubMed ID: 34044019 [TBL] [Abstract][Full Text] [Related]
18. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Hills AE; Patel A; Boyd P; James DC Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148 [TBL] [Abstract][Full Text] [Related]
19. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310 [TBL] [Abstract][Full Text] [Related]
20. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. Pereira NA; Chan KF; Lin PC; Song Z MAbs; 2018 Jul; 10(5):693-711. PubMed ID: 29733746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]