BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31829471)

  • 1. Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation.
    Berezka K; Semkiv M; Borbuliak M; Blomqvist J; Linder T; Ruchała J; Dmytruk K; Passoth V; Sibirny A
    Cell Biol Int; 2021 Mar; 45(3):507-517. PubMed ID: 31829471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.
    Su YK; Willis LB; Jeffries TW
    Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis.
    Dashtban M; Wen X; Bajwa PK; Ho CY; Lee H
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):889-96. PubMed ID: 25845305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars.
    Hughes SR; Gibbons WR; Bang SS; Pinkelman R; Bischoff KM; Slininger PJ; Qureshi N; Kurtzman CP; Liu S; Saha BC; Jackson JS; Cotta MA; Rich JO; Javers JE
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):163-73. PubMed ID: 21748309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis.
    Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha).
    Ruchala J; Kurylenko OO; Dmytruk KV; Sibirny AA
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):109-132. PubMed ID: 31637550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic improvement of native xylose-fermenting yeasts for ethanol production.
    Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae.
    de Sales BB; Scheid B; Gonçalves DL; Knychala MM; Matsushika A; Bon EP; Stambuk BU
    Biotechnol Lett; 2015 Oct; 37(10):1973-82. PubMed ID: 26087949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production.
    Geiger M; Gibbons J; West T; Hughes SR; Gibbons W
    J Lab Autom; 2012 Dec; 17(6):417-24. PubMed ID: 22786982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha.
    Semkiv MV; Ruchala J; Tsaruk AY; Zazulya AZ; Vasylyshyn RV; Dmytruk OV; Zuo M; Kang Y; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2022 Aug; 21(1):162. PubMed ID: 35964033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae.
    De Bari I; De Canio P; Cuna D; Liuzzi F; Capece A; Romano P
    N Biotechnol; 2013 Sep; 30(6):591-7. PubMed ID: 23454083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.
    Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K
    Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation.
    Grabek-Lejko D; Ryabova OB; Oklejewicz B; Voronovsky AY; Sibirny AA
    J Ind Microbiol Biotechnol; 2006 Nov; 33(11):934-40. PubMed ID: 16775686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha.
    Ruchala J; Kurylenko OO; Soontorngun N; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2017 Feb; 16(1):36. PubMed ID: 28245828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest.
    Ferreira AD; Mussatto SI; Cadete RM; Rosa CA; Silva SS
    Yeast; 2011 Jul; 28(7):547-54. PubMed ID: 21626536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of alternative respiration system of Scheffersomyces stipitis and effect on glucose or xylose fermentation.
    Granados-Arvizu JA; Canizal-García M; Madrigal-Pérez LA; González-Hernández JC; Regalado-González C
    FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33493281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cytochrome bc1 complex inhibition during fermentation and growth of Scheffersomyces stipitis using glucose, xylose or arabinose as carbon sources.
    Granados-Arvizu JA; Madrigal-Perez LA; Canizal-García M; González-Hernández JC; García-Almendárez BE; Regalado-González C
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30500899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.