These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 31829574)
1. Oriented Internal Electrostatic Fields Cooperatively Promote Ground- and Excited-State Reactivity: A Case Study in Photochemical CO Blyth MT; Noble BB; Russell IC; Coote ML J Am Chem Soc; 2020 Jan; 142(1):606-613. PubMed ID: 31829574 [TBL] [Abstract][Full Text] [Related]
2. Internal Oriented Electric Fields as a Strategy for Selectively Modifying Photochemical Reactivity. Hill NS; Coote ML J Am Chem Soc; 2018 Dec; 140(50):17800-17804. PubMed ID: 30468576 [TBL] [Abstract][Full Text] [Related]
3. Photochemical reduction of UO(2)(2+) in the presence of alcohol studied by density functional theory calculations. Tsushima S Inorg Chem; 2009 Jun; 48(11):4856-62. PubMed ID: 19374374 [TBL] [Abstract][Full Text] [Related]
4. Electron Localization Function in Excited States: The Case of the Ultrafast Proton Transfer of the Salicylidene Methylamine. Maulén B; Echeverri A; Gómez T; Fuentealba P; Cárdenas C J Chem Theory Comput; 2019 Oct; 15(10):5532-5542. PubMed ID: 31461279 [TBL] [Abstract][Full Text] [Related]
5. Theoretical study of non-Hammett vs. Hammett behaviour in the thermolysis and photolysis of arylchlorodiazirines. Peng XL; Migani A; Li QS; Li ZS; Blancafort L Phys Chem Chem Phys; 2018 Jan; 20(2):1181-1188. PubMed ID: 29242888 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of N-heterocyclic carbene reactivity with practical oriented electric fields. Blyth MT; Coote ML Phys Chem Chem Phys; 2022 Dec; 25(1):375-383. PubMed ID: 36477310 [TBL] [Abstract][Full Text] [Related]
7. Woodward-Hoffmann rules in density functional theory: initial hardness response. De Proft F; Ayers PW; Fias S; Geerlings P J Chem Phys; 2006 Dec; 125(21):214101. PubMed ID: 17166009 [TBL] [Abstract][Full Text] [Related]
8. Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization. Warshel A; Strajbl M; Villà J; Florián J Biochemistry; 2000 Dec; 39(48):14728-38. PubMed ID: 11101287 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic Potential Field Effects on Amine Macrocyclizations within Yoctoliter Spaces: Supramolecular Electron Withdrawing/Donating Groups. Yao W; Wang K; Ismaiel YA; Wang R; Cai X; Teeler M; Gibb BC J Phys Chem B; 2021 Aug; 125(32):9333-9340. PubMed ID: 34355901 [TBL] [Abstract][Full Text] [Related]
10. Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent. Hoffmann N Photochem Photobiol Sci; 2012 Nov; 11(11):1613-41. PubMed ID: 22732723 [TBL] [Abstract][Full Text] [Related]
11. The excited state antiaromatic benzene ring: a molecular Mr Hyde? Papadakis R; Ottosson H Chem Soc Rev; 2015 Sep; 44(18):6472-93. PubMed ID: 25960203 [TBL] [Abstract][Full Text] [Related]
12. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Weberg AB; Murphy RP; Tomson NC Chem Sci; 2022 May; 13(19):5432-5446. PubMed ID: 35694353 [TBL] [Abstract][Full Text] [Related]
13. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study. Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769 [TBL] [Abstract][Full Text] [Related]
14. Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor-acceptor systems. Jamorski Jödicke C; Lüthi HP J Am Chem Soc; 2003 Jan; 125(1):252-64. PubMed ID: 12515528 [TBL] [Abstract][Full Text] [Related]
15. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
16. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods. Sıdır İ; Gülseven Sıdır Y Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():560-7. PubMed ID: 25123946 [TBL] [Abstract][Full Text] [Related]
17. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes. Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631 [TBL] [Abstract][Full Text] [Related]
18. Reduction of CO Ostojić BD; Stanković B; Đorđević DS; Schwerdtfeger P Phys Chem Chem Phys; 2024 Jun; 26(25):17504-17520. PubMed ID: 38416048 [TBL] [Abstract][Full Text] [Related]
19. Straightforward computational determination of energy-transfer kinetics through the application of the Marcus theory. Solé-Daura A; Maseras F Chem Sci; 2024 Aug; 15(34):13650-8. PubMed ID: 39149213 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods. Kumari R; Varghese A; George L J Fluoresc; 2017 Jan; 27(1):151-165. PubMed ID: 27704234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]