These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31829879)

  • 1. The in-plane crashworthiness of multi-layer regularly arranged circular honeycombs.
    Sun D; Li G; Sun Y
    Sci Prog; 2020; 103(1):36850419879028. PubMed ID: 31829879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads.
    Ashab ASMA; Ruan D; Lu G; Bhuiyan AA
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of Out-of-Plane Deformation Mechanisms of Vertex-Based Hierarchical Structures for Crashworthiness.
    Shi C; Liang X; Xiong W; Liu J
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Investigation into In-Plane Crushing of Tube-Reinforced Damaged 5052 Aerospace Grade Aluminum Alloy Honeycomb Panels.
    Djemaoune Y; Krstic B; Rasic S; Radulovic D; Dodic M
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Plane Impact Response of Graded Foam Concrete-Filled Auxetic Honeycombs.
    Wang X; Jia K; Liu Y; Zhou H
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact Response of Re-Entrant Hierarchical Honeycomb.
    Lian J; Wang Z
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crashworthiness Optimization Design of Aluminum Alloy Thin-Walled Triangle Column Based on Bioinspired Strategy.
    Li K; Feng Y; Gao Y; Zheng H; Qiu H
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32024316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On Crashworthiness and Energy-Absorbing Mechanisms of Thick CFRP Structures for Railway Vehicles.
    Chen D; Sun X; Li B; Liu Y; Zhu T; Xiao S
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crashworthiness analysis of a multi-layered bi-directionally corrugated steel plates structure.
    Che Q; Xu P; Li Z; Ma W; Yao S
    Sci Prog; 2020; 103(3):36850420950158. PubMed ID: 32873183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Plane Compressive Responses of Non-Homogenous Re-Entrant Honeycombs Fabricated by Fused Deposition Modelling.
    Baroutaji A; Nikkhah H; Arjunan A; Pirmohammad S; Robinson J
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crashworthiness Study of Functional Gradient Lattice-Reinforced Thin-Walled Tubes under Impact Loading.
    Liu Z; Wang Y; Liang X; Yu W
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb.
    Zhang J; Shi BQ; Wang B; Yu GQ
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on crashworthiness and mechanism of a bionic antler-like gradient thin-walled structure.
    Wei Z; Zhang X; Zheng Y
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36538832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crashworthiness Performance and Multi-Objective Optimization of Bi-Directional Corrugated Tubes under Quasi-Static Axial Crushing.
    Zou L; Wang X; Wang R; Huang X; Li M; Li S; Jiang Z; Yin W
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crashworthiness Characteristic of Dynamically Expanded Circular Tubes Made of Light Alloys: Experimental and Theoretical Investigation.
    KaczyƄski P
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crashworthy optimization of skeleton-filled FRP tubes based on back propagation neural network.
    Xiong Y; Yang H; Li X; Lei H; Lu G
    Heliyon; 2023 Dec; 9(12):e23019. PubMed ID: 38076127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crashworthiness Assessment of Carbon/Glass Epoxy Hybrid Composite Tubes Subjected to Axial Loads.
    Farokhi Nejad A; Koloor SSR; Arifin MLH; Shafiei A; Hassan SA; Yahya MY
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing.
    Wang W; Wang Y; Zhao Z; Tong Z; Xu X; Lim CW
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Crush Behavior and Energy Absorption of Sustainable Beverage Cans and Their Polyurethane Foam-Filled Structures: An Experimental Study.
    Wang Z; Liu Z; Liu Y; Ma W; Zhang Z; Zhao C; Yang C
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning-based crashworthiness optimization for a novel pine cone-inspired multi-cell tubes under bending.
    Liang R; Tang X; Huang J; Bastien C; Zhang C; Tuo W
    Heliyon; 2024 Sep; 10(18):e37828. PubMed ID: 39323804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.