These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31829893)

  • 1. Optimization design and experimental study of vortex pump based on orthogonal test.
    Quan H; Guo Y; Li R; Su Q; Chai Y
    Sci Prog; 2020; 103(1):36850419881883. PubMed ID: 31829893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization design of hump phenomenon of low specific speed centrifugal pump based on CFD and orthogonal test.
    Yu-Qin W; Ze-Wen D
    Sci Rep; 2022 Jul; 12(1):12121. PubMed ID: 35840787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller.
    Liu H; Wang K; Yuan S; Tan M; Wang Y; Dong L
    J Fluids Eng; 2013 Jan; 135(1):111031-1110313. PubMed ID: 23917426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and experimental characterization of splitter blade impact on pump as turbine performance.
    Adu D; Du J; Darko RO; Ofosu Antwi E; Aamir Shafique Khan M
    Sci Prog; 2021; 104(2):36850421993247. PubMed ID: 33900840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Blade Outlet Angle on the Flow Field and Preventing Overload in a Centrifugal Pump.
    Peng G; Chen Q; Zhou L; Pan B; Zhu Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32867032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Investigation of the Influence of Blade Radial Gap Flow on Axial Blood Pump Performance.
    Liu GM; Jin DH; Zhou JY; Zhang Y; Chen HB; Sun HS; Hu SS; Gui XM
    ASAIO J; 2019 Jan; 65(1):59-69. PubMed ID: 29309280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades].
    Liu G; Xi J; Chen H; Zhang Y; Hou J; Zhou J; Sun H; Hu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):379-385. PubMed ID: 31232539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of blade in pump as turbine based on multidisciplinary feasible method.
    Sen-Chun M; Hong-Biao Z; Ting-Ting W; Xiao-Hui W; Feng-Xia S
    Sci Prog; 2020; 103(4):36850420982105. PubMed ID: 33350339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple parameters and target optimization of splitter blades for axial spiral blade blood pump using computational fluid mechanics, neural networks, and particle image velocimetry experiment.
    Yu Z; Tan J; Wang S; Guo B
    Sci Prog; 2021; 104(3):368504211039363. PubMed ID: 34463585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Calculation of Energy Performance and Transient Characteristics of Centrifugal Pump under Gas-Liquid Two-Phase Condition.
    Zhou L; Han Y; Lv W; Yang Y; Zhu Y; Song X
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32731433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump.
    Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y
    Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Numerical simulation and performance analysis of mixed flow blood pump].
    Luo J; Huang D; Xu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):296-303. PubMed ID: 32329282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Fluid Dynamics Model of Continuous-Flow Total Artificial Heart: Right Pump Impeller Design Changes to Improve Biocompatibility.
    Goodin MS; Horvath DJ; Kuban BD; Polakowski AR; Fukamachi K; Flick CR; Karimov JH
    ASAIO J; 2022 Jun; 68(6):829-838. PubMed ID: 34560715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural improvement study of streamline design method, conical hub, and auxiliary blades for axial blood pump.
    Yu Z; Tan J; Wang S; Guo B
    Int J Artif Organs; 2021 Apr; 44(4):251-261. PubMed ID: 32957840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.
    Chan WK; Wong YW; Ong W; Koh SY; Chong V
    Artif Organs; 2005 Mar; 29(3):250-8. PubMed ID: 15725228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.