These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31830178)

  • 21. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism.
    Rangel E; Sansores E; Vallejo E; Hernández-Hernández A; López-Pérez PA
    Phys Chem Chem Phys; 2016 Dec; 18(48):33158-33170. PubMed ID: 27892574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unveiling the efficient state of Pd catalyst for robust electrocatalytic hydrodechlorination.
    Xu S; Mei B; Li F; Mao J; Huang C; Yan Y; Chen N; Xu Y; Shi M
    Nanotechnology; 2023 Aug; 34(44):. PubMed ID: 37506682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monodisperse ordered indium-palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction.
    Chen YJ; Chen YR; Chiang CH; Tung KL; Yeh TK; Tuan HY
    Nanoscale; 2019 Feb; 11(7):3336-3343. PubMed ID: 30724949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuneable effects of pyrrolic N and pyridinic N on the enhanced field emission properties of nitrogen-doped graphene.
    Meng G; Zhan F; She J; Xie J; Zheng Q; Cheng Y; Yin Z
    Nanoscale; 2023 Oct; 15(39):15994-16001. PubMed ID: 37766512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction.
    Wu P; Du P; Zhang H; Cai C
    Phys Chem Chem Phys; 2013 May; 15(18):6920-8. PubMed ID: 23549636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying the active site in nitrogen-doped graphene for the VO2+/VO2(+) redox reaction.
    Jin J; Fu X; Liu Q; Liu Y; Wei Z; Niu K; Zhang J
    ACS Nano; 2013 Jun; 7(6):4764-73. PubMed ID: 23647240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.
    Ren X; Guo H; Feng J; Si P; Zhang L; Ci L
    Chemosphere; 2018 Jan; 191():389-399. PubMed ID: 29054079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration.
    Zhan C; Zhang Y; Cummings PT; Jiang DE
    Phys Chem Chem Phys; 2016 Feb; 18(6):4668-74. PubMed ID: 26794824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A kinetic model for 2,4-dichlorophenol adsorption and hydrodechlorination over a palladized biofilm.
    Wu C; Zhou L; Zhou C; Zhou Y; Zhou J; Xia S; Rittmann BE
    Water Res; 2022 May; 214():118201. PubMed ID: 35196619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing pyridinic nitrogen level in graphene to promote electrocatalytic activity for oxygen reduction reaction.
    Sun J; Wang L; Song R; Yanga S
    Nanotechnology; 2016 Feb; 27(5):055404. PubMed ID: 26752043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping.
    Sandoval S; Kumar N; Sundaresan A; Rao CN; Fuertes A; Tobias G
    Chemistry; 2014 Sep; 20(38):11999-2003. PubMed ID: 25116072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen self-doped porous carbon from surplus sludge as metal-free electrocatalysts for oxygen reduction reactions.
    Zhou K; Zhou W; Liu X; Wang Y; Wan J; Chen S
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14911-8. PubMed ID: 25137301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and theoretical study of the hydrodechlorination of CH(4-x)Cl(x) (x = 1-4) compounds on palladium.
    Chen N; Rioux RM; Barbosa LA; Ribeiro FH
    Langmuir; 2010 Nov; 26(21):16615-24. PubMed ID: 20828142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilizing an Integrated Flow Cathode-Membrane Filtration System for Effective and Continuous Electrochemical Hydrodechlorination.
    Sun J; Garg S; Waite TD
    Environ Sci Technol; 2024 Jul; ():. PubMed ID: 38986049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions.
    Ding Y; Zhang L; Wu KH; Feng Z; Shi W; Gao Q; Zhang B; Su DS
    J Colloid Interface Sci; 2016 Oct; 480():175-183. PubMed ID: 27442144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2018 Jan; 24(2):43. PubMed ID: 29352756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2,4-DCBA: Enhanced electrical conductivity and reactive activity.
    Lou Z; Li Y; Zhou J; Yang K; Liu Y; Baig SA; Xu X
    J Hazard Mater; 2019 Jan; 362():148-159. PubMed ID: 30236935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine-tuned local coordination environment of Pt-N in nanocarbons for efficient propane dehydrogenation.
    Zhai Z; Zhang B; Wang Y; Liu G
    Phys Chem Chem Phys; 2024 Jan; 26(4):3263-3273. PubMed ID: 38196379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.