These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 31830369)
1. Simple and Eco-Friendly Fabrication of Electrode Materials and Their Performance in High-Voltage Lithium-Ion Batteries. Barbosa L; Luna-Lama F; González Peña Y; Caballero A ChemSusChem; 2020 Feb; 13(4):838-849. PubMed ID: 31830369 [TBL] [Abstract][Full Text] [Related]
2. A Novel and Sustainable Approach to Enhance the Li-Ion Storage Capability of Recycled Graphite Anode from Spent Lithium-Ion Batteries. Bhar M; Bhattacharjee U; Sarma D; Krishnamurthy S; Yalamanchili K; Mahata A; Martha SK ACS Appl Mater Interfaces; 2023 Jun; 15(22):26606-26618. PubMed ID: 37226804 [TBL] [Abstract][Full Text] [Related]
3. Efficient Regeneration of Graphite from Spent Lithium-Ion Batteries through Combination of Thermal and Wet Metallurgical Approaches. Yu R; Zhou C; Zhou X; Yang J; Tang J; Zhang Y Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203061 [TBL] [Abstract][Full Text] [Related]
4. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries. Natarajan S; Boricha AB; Bajaj HC Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480 [TBL] [Abstract][Full Text] [Related]
5. A 4 V Li-Ion Battery using All-Spinel-Based Electrodes. Islam M; Jeong MG; Ali G; Oh IH; Chung KY; Sun YK; Jung HG ChemSusChem; 2018 Jul; 11(13):2165-2170. PubMed ID: 29738098 [TBL] [Abstract][Full Text] [Related]
6. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes. Huang H; Xie D; Zheng Z; Zeng Y; Xie S; Liu P; Zhang M; Wang S; Cheng F ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37913551 [TBL] [Abstract][Full Text] [Related]
7. Waste to Wealth: One-Step Exfoliating of Spent Graphite to Build a Low-Cost Cathode for Lithium-Sulfur Batteries. Zhang Q; Hu L; Ren Y; Li J; Kong Y; Li Z; Huang Y Small; 2024 Dec; 20(50):e2406087. PubMed ID: 39396378 [TBL] [Abstract][Full Text] [Related]
8. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Guo Y; Li F; Zhu H; Li G; Huang J; He W Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969 [TBL] [Abstract][Full Text] [Related]
9. Recycling of Spent Graphite from Lithium-Ion Batteries for Aqueous Zn Dual-Ion Batteries. Cai W; Zhang L; Chen K; Xiao M; Chen T; Dong X; Pu Z; Wan F; Guo X ACS Appl Mater Interfaces; 2024 Sep; 16(38):50897-50904. PubMed ID: 39267588 [TBL] [Abstract][Full Text] [Related]
10. Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries. Li J; Xu X; Yu X; Han X; Zhang T; Zuo Y; Zhang C; Yang D; Wang X; Luo Z; Arbiol J; Llorca J; Liu J; Cabot A ACS Appl Mater Interfaces; 2020 Jan; 12(4):4414-4422. PubMed ID: 31909589 [TBL] [Abstract][Full Text] [Related]
11. Regeneration and characterization of LiNi Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604 [TBL] [Abstract][Full Text] [Related]
12. Preparation of single-crystal ternary cathode materials Huang C; Xia X; Chi Z; Yang Z; Huang H; Chen Z; Tang W; Wu G; Chen H; Zhang W Nanoscale; 2022 Jul; 14(27):9724-9735. PubMed ID: 35762909 [TBL] [Abstract][Full Text] [Related]
13. New Ni Srout M; Kwon NH; Luo W; Züttel A; Fromm KM; Saadoune I ChemSusChem; 2019 Nov; 12(21):4846-4853. PubMed ID: 31461571 [TBL] [Abstract][Full Text] [Related]
14. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system. Ning P; Meng Q; Dong P; Duan J; Xu M; Lin Y; Zhang Y Waste Manag; 2020 Feb; 103():52-60. PubMed ID: 31865035 [TBL] [Abstract][Full Text] [Related]
15. Controlled Synthesis of SnO Jayan P; Anjali A; Park S; Lee YS; Aravindan V Small; 2024 Feb; 20(5):e2305309. PubMed ID: 37752746 [TBL] [Abstract][Full Text] [Related]
16. A New CuO-Fe Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612 [TBL] [Abstract][Full Text] [Related]
17. Direct recovery of degraded LiCoO Yang H; Deng B; Jing X; Li W; Wang D Waste Manag; 2021 Jun; 129():85-94. PubMed ID: 34044320 [TBL] [Abstract][Full Text] [Related]
18. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi Ren D; Shen Y; Yang Y; Shen L; Levin BDA; Yu Y; Muller DA; Abruña HD ACS Appl Mater Interfaces; 2017 Oct; 9(41):35811-35819. PubMed ID: 28938066 [TBL] [Abstract][Full Text] [Related]
19. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Zhang Y; Wang W; Fang Q; Xu S Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062 [TBL] [Abstract][Full Text] [Related]
20. Recovery of carbon from spent carbon cathode by alkaline and acid leaching and thermal treatment and exploration of its application in lithium-ion batteries. Zhou H; Zhang D; Jiang Y; Zeng B; Zhao C; Zhang M; Zeng B; Zhu X; Su X; Romanovski V; Bi R Environ Sci Pollut Res Int; 2023 Nov; 30(53):114327-114335. PubMed ID: 37861847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]