These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31830483)

  • 1. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression.
    Gianola D; Fernando RL; Schön CC
    Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of pedigree and various forms of marker-derived relationship coefficients in genomic prediction and their correlations.
    Solaymani S; Ayatollahi Mehrgardi A; Esmailizadeh A; Tusell L; Momen M
    J Anim Breed Genet; 2020 Sep; 137(5):423-437. PubMed ID: 32003127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle.
    Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU
    Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple-trait genomic selection methods increase genetic value prediction accuracy.
    Jia Y; Jannink JL
    Genetics; 2012 Dec; 192(4):1513-22. PubMed ID: 23086217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis.
    Gianola D; Fariello MI; Naya H; Schön CC
    G3 (Bethesda); 2016 Oct; 6(10):3241-3256. PubMed ID: 27520956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.
    Tiezzi F; Maltecca C
    Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.
    Calus MP; de Haas Y; Veerkamp RF
    J Dairy Sci; 2013 Oct; 96(10):6703-15. PubMed ID: 23891299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat.
    Gianola D; Okut H; Weigel KA; Rosa GJ
    BMC Genet; 2011 Oct; 12():87. PubMed ID: 21981731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A predictive assessment of genetic correlations between traits in chickens using markers.
    Momen M; Mehrgardi AA; Sheikhy A; Esmailizadeh A; Fozi MA; Kranis A; Valente BD; Rosa GJ; Gianola D
    Genet Sel Evol; 2017 Feb; 49(1):16. PubMed ID: 28148241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data.
    Morota G; Koyama M; Rosa GJ; Weigel KA; Gianola D
    Genet Sel Evol; 2013 Jun; 45(1):17. PubMed ID: 23763755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits.
    Qu J; Runcie D; Cheng H
    Genetics; 2023 Mar; 223(3):. PubMed ID: 36529897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementing a QTL detection study (GWAS) using genomic prediction methodology.
    Garrick DJ; Fernando RL
    Methods Mol Biol; 2013; 1019():275-98. PubMed ID: 23756895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of identity-by-descent and identity-by-state matrices that are used for genetic evaluation and estimation of variance components.
    Fernando RL; Cheng H; Sun X; Garrick DJ
    J Anim Breed Genet; 2017 Jun; 134(3):213-223. PubMed ID: 28508481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of complex human traits using the genomic best linear unbiased predictor.
    de Los Campos G; Vazquez AI; Fernando R; Klimentidis YC; Sorensen D
    PLoS Genet; 2013; 9(7):e1003608. PubMed ID: 23874214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Bayesian genomic prediction methods to genome-wide association analyses.
    Wolc A; Dekkers JCM
    Genet Sel Evol; 2022 May; 54(1):31. PubMed ID: 35562659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.