These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31830484)

  • 1. Gaze-contingent stimulus removal leads to subsequent changes in overt attentional allocation.
    Ludwig K; Schmid D; Schenk T
    Neuropsychologia; 2020 Mar; 139():107297. PubMed ID: 31830484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overt attention in contextual cuing of visual search is driven by the attentional set, but not by the predictiveness of distractors.
    Beesley T; Hanafi G; Vadillo MA; Shanks DR; Livesey EJ
    J Exp Psychol Learn Mem Cogn; 2018 May; 44(5):707-721. PubMed ID: 29608077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Space exploration in neglect.
    Karnath HO; Niemeier M; Dichgans J
    Brain; 1998 Dec; 121 ( Pt 12)():2357-67. PubMed ID: 9874486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intact attentional orienting towards inverted faces revealed by both manual responses and eye-movement measurement in individuals with Williams syndrome.
    Hirai M; Muramatsu Y; Mizuno S; Kurahashi N; Kurahashi H; Nakamura M
    J Intellect Disabil Res; 2016 Oct; 60(10):969-81. PubMed ID: 27476718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tones disrupt visual fixations and responding on a visual-spatial task.
    Laughery D; Pesina N; Robinson CW
    J Exp Psychol Hum Percept Perform; 2020 Nov; 46(11):1301-1312. PubMed ID: 32730069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of reward learning on visual attention and eye movements in a naturalistic environment: A virtual reality study.
    Bourgeois A; Badier E; Baron N; Carruzzo F; Vuilleumier P
    PLoS One; 2018; 13(12):e0207990. PubMed ID: 30517170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contingent capture effects in temporal order judgments.
    Born S; Kerzel D; Pratt J
    J Exp Psychol Hum Percept Perform; 2015 Aug; 41(4):995-1006. PubMed ID: 25938252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal competition and task-relevance shape the spatial distribution of emotional interference during rapid visual processing: Evidence from gaze-contingent eye-tracking.
    Kennedy BL; Pearson D; Sutton DJ; Beesley T; Most SB
    Atten Percept Psychophys; 2018 Feb; 80(2):426-438. PubMed ID: 29147961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Face stimulus eliminates antisaccade-cost: gaze following is a different kind of arrow.
    Zeligman L; Zivotofsky AZ
    Exp Brain Res; 2018 Apr; 236(4):1041-1052. PubMed ID: 29423811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revising the link between microsaccades and the spatial cueing of voluntary attention.
    Meyberg S; Sinn P; Engbert R; Sommer W
    Vision Res; 2017 Apr; 133():47-60. PubMed ID: 28163059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are eyes special? Electrophysiological and behavioural evidence for a dissociation between eye-gaze and arrows attentional mechanisms.
    Marotta A; Lupiáñez J; Román-Caballero R; Narganes-Pineda C; Martín-Arévalo E
    Neuropsychologia; 2019 Jun; 129():146-152. PubMed ID: 30935837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of salience-driven and content-driven spatial attention to scene category with predictive decoding of gaze patterns.
    O'Connell TP; Walther DB
    J Vis; 2015; 15(5):20. PubMed ID: 26067538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ineffective leftward search in line bisection and mechanisms of left unilateral spatial neglect.
    Ishiai S; Seki K; Koyama Y; Gono S
    J Neurol; 1996 May; 243(5):381-7. PubMed ID: 8741077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Line bisection under an attentional gradient induced by simulated neglect in healthy subjects.
    Grewal P; Viswanathan J; Barton JJ; Lanyon LJ
    Neuropsychologia; 2012 May; 50(6):1190-201. PubMed ID: 22118912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of incidentally learned visual search arrays is supported by fixational eye movements.
    Annac E; Pointner M; Khader PH; Müller HJ; Zang X; Geyer T
    J Exp Psychol Learn Mem Cogn; 2019 Dec; 45(12):2147-2164. PubMed ID: 30883169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of dynamic bottom-up features and top-down control on the visual exploration of moving real-world scenes in hemispatial neglect.
    Machner B; Dorr M; Sprenger A; von der Gablentz J; Heide W; Barth E; Helmchen C
    Neuropsychologia; 2012 Aug; 50(10):2415-25. PubMed ID: 22750122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes.
    Smith TJ; Mital PK
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23863509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye and hand movements during reconstruction of spatial memory.
    Burke MR; Allen RJ; Gonzalez C
    Perception; 2012; 41(7):803-18. PubMed ID: 23155732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The eye-mind wandering link: Identifying gaze indices of mind wandering across tasks.
    Faber M; Krasich K; Bixler RE; Brockmole JR; D'Mello SK
    J Exp Psychol Hum Percept Perform; 2020 Oct; 46(10):1201-1221. PubMed ID: 32730072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralesional cross-over in chronic neglect: visual search patterns reveal neglect of the ipsilesional hemispace.
    Gall C; Günther T; Fuhrmans F; Sabel BA
    NeuroRehabilitation; 2012; 31(2):171-84. PubMed ID: 22951712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.