These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 31830487)

  • 1. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine.
    Deyama S; Duman RS
    Pharmacol Biochem Behav; 2020 Jan; 188():172837. PubMed ID: 31830487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine.
    Deyama S; Kaneda K
    Neuropharmacology; 2023 Feb; 224():109335. PubMed ID: 36403852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGF-1 release in the medial prefrontal cortex mediates the rapid and sustained antidepressant-like actions of ketamine.
    Deyama S; Kondo M; Shimada S; Kaneda K
    Transl Psychiatry; 2022 May; 12(1):178. PubMed ID: 35577782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Resolvins as novel targets for rapid-acting antidepressants].
    Deyama S
    Nihon Yakurigaku Zasshi; 2020; 155(6):381-385. PubMed ID: 33132254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants.
    Duman RS; Deyama S; Fogaça MV
    Eur J Neurosci; 2021 Jan; 53(1):126-139. PubMed ID: 31811669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression.
    Zhang JC; Yao W; Dong C; Yang C; Ren Q; Ma M; Han M; Hashimoto K
    Psychopharmacology (Berl); 2015 Dec; 232(23):4325-35. PubMed ID: 26337614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists.
    Duman RS; Li N
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1601):2475-84. PubMed ID: 22826346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression.
    Yang B; Zhang JC; Han M; Yao W; Yang C; Ren Q; Ma M; Chen QX; Hashimoto K
    Psychopharmacology (Berl); 2016 Oct; 233(19-20):3647-57. PubMed ID: 27488193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPA Receptor Activation-Independent Antidepressant Actions of Ketamine Metabolite (S)-Norketamine.
    Yang C; Kobayashi S; Nakao K; Dong C; Han M; Qu Y; Ren Q; Zhang JC; Ma M; Toki H; Yamaguchi JI; Chaki S; Shirayama Y; Nakazawa K; Manabe T; Hashimoto K
    Biol Psychiatry; 2018 Oct; 84(8):591-600. PubMed ID: 29945718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotrophic and Antidepressant Actions of Brain-Derived Neurotrophic Factor Require Vascular Endothelial Growth Factor.
    Deyama S; Bang E; Kato T; Li XY; Duman RS
    Biol Psychiatry; 2019 Jul; 86(2):143-152. PubMed ID: 30712809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Elucidation of the Mechanisms Underlying the Rapid Antidepressant Actions of Ketamine and Search for Possible Candidates for Novel Rapid-acting Antidepressants].
    Deyama S
    Yakugaku Zasshi; 2023; 143(9):713-720. PubMed ID: 37661437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BDNF release and signaling are required for the antidepressant actions of GLYX-13.
    Kato T; Fogaça MV; Deyama S; Li XY; Fukumoto K; Duman RS
    Mol Psychiatry; 2018 Oct; 23(10):2007-2017. PubMed ID: 29203848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2
    Fukumoto K; Fogaça MV; Liu RJ; Duman C; Kato T; Li XY; Duman RS
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):297-302. PubMed ID: 30559184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Neuronal VEGF Signaling in the Prefrontal Cortex in the Rapid Antidepressant Effects of Ketamine.
    Deyama S; Bang E; Wohleb ES; Li XY; Kato T; Gerhard DM; Dutheil S; Dwyer JM; Taylor SR; Picciotto MR; Duman RS
    Am J Psychiatry; 2019 May; 176(5):388-400. PubMed ID: 30606046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signaling pathways underlying the rapid antidepressant actions of ketamine.
    Duman RS; Li N; Liu RJ; Duric V; Aghajanian G
    Neuropharmacology; 2012 Jan; 62(1):35-41. PubMed ID: 21907221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex.
    Zhou W; Wang N; Yang C; Li XM; Zhou ZQ; Yang JJ
    Eur Psychiatry; 2014 Sep; 29(7):419-23. PubMed ID: 24321772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT
    Sayson LV; Botanas CJ; Custodio RJP; Abiero A; Kim M; Lee HJ; Kim HJ; Yoo SY; Lee KW; Ryu HW; Acharya S; Kim KM; Lee YS; Cheong JH
    Psychopharmacology (Berl); 2019 Jul; 236(7):2201-2210. PubMed ID: 30891619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BDNF - a key transducer of antidepressant effects.
    Björkholm C; Monteggia LM
    Neuropharmacology; 2016 Mar; 102():72-9. PubMed ID: 26519901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine.
    Yao W; Cao Q; Luo S; He L; Yang C; Chen J; Qi Q; Hashimoto K; Zhang JC
    Mol Psychiatry; 2022 Mar; 27(3):1618-1629. PubMed ID: 34819637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain.
    Réus GZ; Stringari RB; Ribeiro KF; Ferraro AK; Vitto MF; Cesconetto P; Souza CT; Quevedo J
    Behav Brain Res; 2011 Aug; 221(1):166-71. PubMed ID: 21397634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.