These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31830604)

  • 1. Does Samarco's spilled mud impair the growth of native trees of the Atlantic Rainforest?
    Cruz FVDS; Gomes MP; Bicalho EM; Della Torre F; Garcia QS
    Ecotoxicol Environ Saf; 2020 Feb; 189():110021. PubMed ID: 31830604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fertilization assures mineral nutrition but does not overcome the effects of Fe accumulation in plants grown in iron ore tailings.
    Cruz FVDS; Gomes MP; Bicalho EM; Garcia QS
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18047-18062. PubMed ID: 34686954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategy for phytomanagement in an area affected by iron ore dam rupture: A study case in Minas Gerais State, Brazil.
    Zago VCP; das Dores NC; Watts BA
    Environ Pollut; 2019 Jun; 249():1029-1037. PubMed ID: 31146309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.
    Cele EN; Maboeta M
    J Environ Manage; 2016 Jan; 165():167-174. PubMed ID: 26433357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revegetation of an area impacted by iron ore tailings: evaluating fertilization alternatives in native pioneer and secondary trees.
    Santos TRS; Santos JAS; Pereira EG; Garcia QS
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3760-3773. PubMed ID: 35948796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural use of Samarco's spilled mud assessed by rice cultivation: A promising residue use?
    Andrade GF; Paniz FP; Martins AC; Rocha BA; da Silva Lobato AK; Rodrigues JL; Cardoso-Gustavson P; Masuda HP; Batista BL
    Chemosphere; 2018 Feb; 193():892-902. PubMed ID: 29874764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fundão dam failure: Iron ore tailing impact on marine benthic macrofauna.
    Nascimento RL; Alves PR; Di Domenico M; Braga AA; de Paiva PC; D'Azeredo Orlando MT; Sant'Ana Cavichini A; Longhini CM; Martins CC; Neto RR; Grilo CF; Oliveira KSS; da Silva Quaresma V; Costa ES; Cagnin RC; da Silva CA; Sá F; de Lourdes Longo L
    Sci Total Environ; 2022 Sep; 838(Pt 3):156205. PubMed ID: 35623525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the reclamation of a contaminated site affected by the Fundão dam tailings trough phytoremediation and bioremediation.
    Rondina Gomes A; Antão A; Santos CH; Rigobelo EC; Scotti MR
    Int J Phytoremediation; 2024 Jun; 26(8):1305-1320. PubMed ID: 38391288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace metals in Rio Doce sediments before and after the collapse of the Fundão iron ore tailing dam, Southeastern Brazil.
    Duarte EB; Neves MA; de Oliveira FB; Martins ME; de Oliveira CHR; Burak DL; Orlando MTD; Rangel CVGT
    Chemosphere; 2021 Jan; 262():127879. PubMed ID: 32781334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods.
    Yan D; Zhao F; Sun OJ
    Environ Manage; 2013 Sep; 52(3):748-57. PubMed ID: 23811774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil).
    Segura FR; Nunes EA; Paniz FP; Paulelli ACC; Rodrigues GB; Braga GÚL; Dos Reis Pedreira Filho W; Barbosa F; Cerchiaro G; Silva FF; Batista BL
    Environ Pollut; 2016 Nov; 218():813-825. PubMed ID: 27524249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vermicompost improves maize, millet and sorghum growth in iron mine tailings.
    Esteves GF; de Souza KRD; Bressanin LA; Andrade PCC; Veroneze Júnior V; Dos Reis PE; da Silva AB; Mantovani JR; Magalhães PC; Pasqual M; de Souza TC
    J Environ Manage; 2020 Jun; 264():110468. PubMed ID: 32250898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of iron-rich tailings via portable X-ray fluorescence spectrometry: the Mariana dam disaster, southeast Brazil.
    Ferreira GWD; Ribeiro BT; Weindorf DC; Teixeira BI; Chakraborty S; Li B; Guilherme LRG; Scolforo JRS
    Environ Monit Assess; 2021 Mar; 193(4):203. PubMed ID: 33751261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient limitation determines the suitability of a municipal organic waste for phytomanaging metal(loid) enriched mine tailings with a pine-grass co-culture.
    Martínez-Oró D; Párraga-Aguado I; Querejeta JI; Álvarez-Rogel J; Conesa HM
    Chemosphere; 2019 Jan; 214():436-444. PubMed ID: 30273877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed characterization of iron-rich tailings after the Fundão dam failure, Brazil, with inclusion of proximal sensors data, as a secure basis for environmental and agricultural restoration.
    T Silva de Sá R; Tesser Antunes Prianti M; Andrade R; Oliveira Silva A; Rodrigues Batista É; Valentim Dos Santos J; Magno Silva F; Aurélio Carbone Carneiro M; Roberto Guimarães Guilherme L; Chakraborty S; C Weindorf D; Curi N; Henrique Godinho Silva S; Teixeira Ribeiro B
    Environ Res; 2023 Jul; 228():115858. PubMed ID: 37062481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do tailings from the Mariana, MG (Brazil), disaster affect the initial development of millet, maize, and sorghum?
    Esteves GF; Bressanin LA; de Souza KRD; da Silva AB; Mantovani JR; Marques DM; Magalhães PC; Pasqual M; de Souza TC
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38662-38673. PubMed ID: 32632689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Environmental Impact of a Mine Dam Rupture in Brazil: Prospects for Remediation.
    Santos OSH; Avellar FC; Alves M; Trindade RC; Menezes MB; Ferreira MC; França GS; Cordeiro J; Sobreira FG; Yoshida IM; Moura PM; Baptista MB; Scotti MR
    J Environ Qual; 2019 Mar; 48(2):439-449. PubMed ID: 30951136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran.
    Soltani N; Keshavarzi B; Moore F; Sorooshian A; Ahmadi MR
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):18798-18816. PubMed ID: 28620857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rehabilitation of a Riparian Site Contaminated by Tailings from the Fundão Dam, Brazil, Using Different Remediation Strategies.
    Gomes AR; Antão A; Santos AGP; Lacerda TJ; Medeiros MB; Saenz LAI; Alvarenga S; Santos CH; Rigobelo EC; Scotti MR
    Environ Toxicol Chem; 2021 Aug; 40(8):2359-2373. PubMed ID: 33928667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-carbon wood ash biochar enhances native tree survival and growth on sand-capped mine tailings.
    Williams JM; Thomas SC
    Environ Sci Pollut Res Int; 2024 Jul; 31(31):43874-43895. PubMed ID: 38910184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.