BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31830786)

  • 1. Two-Phase Reaction Mechanism for Fluorination and Defluorination in Fluoride-Shuttle Batteries: A First-Principles Study.
    Haruyama J; Okazaki KI; Morita Y; Nakamoto H; Matsubara E; Ikeshoji T; Otani M
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):428-435. PubMed ID: 31830786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of Reactions of a Fluoride Shuttle Battery at the Surfaces of BiF
    Yamanaka T; Okazaki KI; Abe T; Nishio K; Ogumi Z
    ChemSusChem; 2019 Jan; 12(2):527-534. PubMed ID: 30450797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rocking-Chair Aqueous Fluoride-Ion Batteries Enabled by Hydrogen Bonding Competition.
    Wang H; Lei C; Liu T; Xu C; He X; Liang X
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202401483. PubMed ID: 38488325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature cycling of metal fluoride electrodes: Liquid electrolytes for high-energy fluoride ion cells.
    Davis VK; Bates CM; Omichi K; Savoie BM; Momčilović N; Xu Q; Wolf WJ; Webb MA; Billings KJ; Chou NH; Alayoglu S; McKenney RK; Darolles IM; Nair NG; Hightower A; Rosenberg D; Ahmed M; Brooks CJ; Miller TF; Grubbs RH; Jones SC
    Science; 2018 Dec; 362(6419):1144-1148. PubMed ID: 30523107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing ternary materials for fluoride-ion batteries.
    McTaggart DH; Sundberg JD; McRae LM; Warren SC
    Sci Data; 2023 Feb; 10(1):90. PubMed ID: 36774371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled introduction of defects into single-walled carbon nanotubes via a fluorination-defluorination strategy using xenon difluoride and their alkaline oxygen reduction reaction catalytic activity.
    Yokoyama K; Mamiya I; Morita H; Sato Y; Sato K; Nishida T; Sato Y
    J Colloid Interface Sci; 2022 Dec; 627():168-179. PubMed ID: 35842967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Fluorite-Type Fluoride Ba
    Chikamatsu A; Kawahara K; Shiina T; Onozuka T; Katayama T; Hasegawa T
    ACS Omega; 2018 Oct; 3(10):13141-13145. PubMed ID: 31458034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Electrochemical Intercalation and Deintercalation of Fluoride Ions into Host Lattices with Schafarzikite-Type Structure.
    Nowroozi MA; de Laune B; Clemens O
    ChemistryOpen; 2018 Aug; 7(8):617-623. PubMed ID: 30151333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwell Fluoride Screen for Chemical, Enzymatic, and Cellular Reactions Reveals Latent Microbial Defluorination Capacity for -CF
    Bygd MD; Aukema KG; Richman JE; Wackett LP
    Appl Environ Microbiol; 2022 May; 88(9):e0028822. PubMed ID: 35435713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese Catalyzed C-H Halogenation.
    Liu W; Groves JT
    Acc Chem Res; 2015 Jun; 48(6):1727-35. PubMed ID: 26042637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity.
    Kim DW; Jeong HJ; Lim ST; Sohn MH; Katzenellenbogen JA; Chi DY
    J Org Chem; 2008 Feb; 73(3):957-62. PubMed ID: 18166063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The determinants of effective defluorination by the LiAl-LDHs.
    Li K; Liu H; Li S; Li Q; Li S; Wang Q
    J Environ Sci (China); 2023 Apr; 126():153-162. PubMed ID: 36503744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heats of formation of krypton fluorides and stability predictions for KrF4 and KrF6 from high level electronic structure calculations.
    Dixon DA; Wang TH; Grant DJ; Peterson KA; Christe KO; Schrobilgen GJ
    Inorg Chem; 2007 Nov; 46(23):10016-21. PubMed ID: 17941630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity.
    Kharasch ED; Hankins DC; Thummel KE
    Anesthesiology; 1995 Mar; 82(3):689-99. PubMed ID: 7879937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective etching mechanism of silicon oxide against silicon by hydrogen fluoride: a density functional theory study.
    Hidayat R; Kim HL; Khumaini K; Chowdhury T; Mayangsari TR; Cho B; Park S; Lee WJ
    Phys Chem Chem Phys; 2023 Feb; 25(5):3890-3899. PubMed ID: 36647706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled formation of mixed nanoscale domains of high capacity Fe2O3-FeF3 conversion compounds by direct fluorination.
    Zhou H; Ruther RE; Adcock J; Zhou W; Dai S; Nanda J
    ACS Nano; 2015 Mar; 9(3):2530-9. PubMed ID: 25703921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defluorination of perfluoropropene using Cp*2ZrH2 and Cp2ZrHF: a mechanism investigation from a joint experimental-theoretical perspective.
    Clot E; Mégret C; Kraft BM; Eisenstein O; Jones WD
    J Am Chem Soc; 2004 May; 126(17):5647-53. PubMed ID: 15113236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing mechanism for a fluoride chemosensor: invalidity of excited-state proton transfer mechanism.
    Chen JS; Zhou PW; Yang SQ; Fu AP; Chu TS
    Phys Chem Chem Phys; 2013 Oct; 15(38):16183-9. PubMed ID: 23996092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ pyrolysis based on alkaline medium removes fluorine-containing contaminants from spent lithium-ion batteries.
    Huang H; Liu C; Sun Z
    J Hazard Mater; 2023 Sep; 457():131782. PubMed ID: 37307731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The accuracy of standard enthalpies and entropies for phases of petrological interest derived from density-functional calculations.
    Benisek A; Dachs E
    Contrib Mineral Petrol; 2018; 173(11):90. PubMed ID: 30416201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.