These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31830792)

  • 1. Early-stage corrosion, ion release, and the antibacterial effect of copper and cuprous oxide in physiological buffers: Phosphate-buffered saline vs Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.
    Luo J; Hein C; Pierson JF; Mücklich F
    Biointerphases; 2019 Dec; 14(6):061004. PubMed ID: 31830792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: "Early-stage corrosion, ion release, and the antibacterial effect of copper and cuprous oxide in physiological buffers: Phosphate-buffered saline vs Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid" [Biointerphases 14, 061004 (2019)].
    Luo J; Hein C; Pierson JF; Mücklich F
    Biointerphases; 2021 Jan; 16(1):018601. PubMed ID: 33401919
    [No Abstract]   [Full Text] [Related]  

  • 3. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles.
    Yang Z; Hao X; Chen S; Ma Z; Wang W; Wang C; Yue L; Sun H; Shao Q; Murugadoss V; Guo Z
    J Colloid Interface Sci; 2019 Jan; 533():13-23. PubMed ID: 30144689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteria accumulate copper ions and inhibit oxide formation on copper surface during antibacterial efficiency test.
    Luo J; Hein C; Ghanbaja J; Pierson JF; Mücklich F
    Micron; 2019 Dec; 127():102759. PubMed ID: 31585250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of size-controlled nano-Cu
    Zhou J; Wang C; Cunningham AJ; Hu Z; Xiang H; Sun B; Zuo W; Zhu M
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():499-504. PubMed ID: 31029344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water- and Acid-Sensitive Cu
    Li H; Luo S; Zhang L; Zhao Z; Wu M; Li W; Liu FQ
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1910-1920. PubMed ID: 34928132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of copper oxides in contact killing of bacteria.
    Hans M; Erbe A; Mathews S; Chen Y; Solioz M; Mücklich F
    Langmuir; 2013 Dec; 29(52):16160-6. PubMed ID: 24344971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial mechanism of cuprous oxide (Cu
    Behzadinasab S; Williams MD; Falkinham Iii JO; Ducker WA
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1867-1877. PubMed ID: 37688933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Cu
    Yang Z; Ma C; Wang W; Zhang M; Hao X; Chen S
    J Colloid Interface Sci; 2019 Dec; 557():156-167. PubMed ID: 31520996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.
    M El Saeed A; Abd El-Fattah M; Azzam AM; Dardir MM; Bader MM
    Int J Biol Macromol; 2016 Aug; 89():190-7. PubMed ID: 27103492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.
    Jin X; Gao L; Liu E; Yu F; Shu X; Wang H
    J Mech Behav Biomed Mater; 2015 Oct; 50():23-32. PubMed ID: 26093948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31.
    Zou YH; Wang J; Cui LY; Zeng RC; Wang QZ; Han QX; Qiu J; Chen XB; Chen DC; Guan SK; Zheng YF
    Acta Biomater; 2019 Oct; 98():196-214. PubMed ID: 31154057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria.
    Elguindi J; Moffitt S; Hasman H; Andrade C; Raghavan S; Rensing C
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1963-70. PubMed ID: 21085951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations.
    Sedighi A; Montazer M; Samadi N
    Carbohydr Polym; 2014 Sep; 110():489-98. PubMed ID: 24906783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ deposition of Cu
    Emam HE; Ahmed HB; Bechtold T
    Carbohydr Polym; 2017 Jun; 165():255-265. PubMed ID: 28363548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces.
    Rosenberg M; Vija H; Kahru A; Keevil CW; Ivask A
    Sci Rep; 2018 May; 8(1):8172. PubMed ID: 29802355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrodeposited Cu
    Subhadarshini S; Singh R; Goswami DK; Das AK; Das NC
    Langmuir; 2019 Dec; 35(52):17166-17176. PubMed ID: 31809569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two novel drugs as bio-functional inhibitors for copper performing excellent anticorrosion and antibacterial properties.
    Feng L; Zhang S; Tao B; Tan B; Xiang B; Tian W; Chen S
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110898. PubMed ID: 32126361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application.
    Liu J; Zhang X; Wang H; Li F; Li M; Yang K; Zhang E
    Biomed Mater; 2014 Apr; 9(2):025013. PubMed ID: 24565798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.