These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31830792)

  • 41. Antibacterial properties of mesoporous copper-doped silica xerogels.
    Wu X; Ye L; Liu K; Wang W; Wei J; Chen F; Liu C
    Biomed Mater; 2009 Aug; 4(4):045008. PubMed ID: 19605960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In Situ Growth of Highly Compatible Cu
    Wang R; Zhou J; Xiang H; Hu Z; Yu S; Zhai G; Zhu L; Zhu M
    Macromol Rapid Commun; 2024 Sep; 45(18):e2400302. PubMed ID: 38877645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Red Microalgal Sulfated Polysaccharide-Cu
    Yehuda N; Turkulets Y; Shalish I; Kushmaro A; Malis Arad S
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7070-7079. PubMed ID: 33544596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Full Spectrum Visible LED Light Activated Antibacterial System Realized by Optimized Cu2O Crystals.
    Shi X; Xue C; Fang F; Song X; Yu F; Liu M; Wei Z; Fang X; Zhao D; Xin H; Wang X
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8386-92. PubMed ID: 26978589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays.
    Kiani F; Astani NA; Rahighi R; Tayyebi A; Tayebi M; Khezri J; Hashemi E; Rothlisberger U; Simchi A
    J Colloid Interface Sci; 2018 Jul; 521():119-131. PubMed ID: 29558691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper Surface Treatment Method with Antibacterial Performance Using "Super-Spread Wetting" Properties.
    Seo B; Kanematsu H; Nakamoto M; Miyabayashi Y; Tanaka T
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009540
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method.
    Ponomarev VA; Shvindina NV; Permyakova ES; Slukin PV; Ignatov SG; Sirota B; Voevodin AA; Shtansky DV
    Colloids Surf B Biointerfaces; 2019 Jan; 173():719-724. PubMed ID: 30384268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects.
    Fiedler J; Kolitsch A; Kleffner B; Henke D; Stenger S; Brenner RE
    Int J Artif Organs; 2011 Sep; 34(9):882-8. PubMed ID: 22094570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and antibacterial activity of copper-immobilized membrane comprising grafted poly(4-vinylpyridine) chains.
    Qiu JH; Zhang YW; Zhang YT; Zhang HQ; Liu JD
    J Colloid Interface Sci; 2011 Feb; 354(1):152-9. PubMed ID: 21084093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.
    Gutierrez H; Portman T; Pershin V; Ringuette M
    J Appl Microbiol; 2013 Mar; 114(3):680-7. PubMed ID: 23228103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin.
    Singh A; Ahmed A; Prasad KN; Khanduja S; Singh SK; Srivastava JK; Gajbhiye NS
    Antimicrob Agents Chemother; 2015 Nov; 59(11):6882-90. PubMed ID: 26303796
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds.
    Sunada K; Minoshima M; Hashimoto K
    J Hazard Mater; 2012 Oct; 235-236():265-70. PubMed ID: 22902129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antibacterial properties of nanostructured Cu-TiO
    Rosenbaum J; Versace DL; Abbad-Andallousi S; Pires R; Azevedo C; Cénédese P; Dubot P
    Biomater Sci; 2017 Feb; 5(3):455-462. PubMed ID: 28067359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antibacterial TiCu/TiCuN Multilayer Films with Good Corrosion Resistance Deposited by Axial Magnetic Field-Enhanced Arc Ion Plating.
    Peng C; Zhao Y; Jin S; Wang J; Liu R; Liu H; Shi W; Kolawole SK; Ren L; Yu B; Yang K
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):125-136. PubMed ID: 30540429
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effective bacterial inactivation and removal of copper by porous ceramics with high surface area.
    Klein TY; Wehling J; Treccani L; Rezwan K
    Environ Sci Technol; 2013 Jan; 47(2):1065-72. PubMed ID: 23273049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antibacterial activity of an NIR-induced Zn ion release film.
    Yang T; Wang D; Liu X
    J Mater Chem B; 2020 Jan; 8(3):406-415. PubMed ID: 31850453
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of nano CuAl
    Wang Z; Liang K; Chan SW; Tang Y
    J Hazard Mater; 2019 Jun; 371():550-557. PubMed ID: 30878905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphology effect on antibacterial activity of cuprous oxide.
    Pang H; Gao F; Lu Q
    Chem Commun (Camb); 2009 Mar; (9):1076-8. PubMed ID: 19225641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation and characterization of copper and zinc adsorbed cetylpyridinium and N-lauroylsarcosinate intercalated montmorillonites and their antibacterial activity.
    Özdemir G; Yapar S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110791. PubMed ID: 31955019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property.
    Zhang E; Li F; Wang H; Liu J; Wang C; Li M; Yang K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4280-7. PubMed ID: 23910344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.