These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 31830921)
1. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network. Cai L; Wu Y; Gao J BMC Bioinformatics; 2019 Dec; 20(1):665. PubMed ID: 31830921 [TBL] [Abstract][Full Text] [Related]
2. BreakNet: detecting deletions using long reads and a deep learning approach. Luo J; Ding H; Shen J; Zhai H; Wu Z; Yan C; Luo H BMC Bioinformatics; 2021 Dec; 22(1):577. PubMed ID: 34856923 [TBL] [Abstract][Full Text] [Related]
3. A universal SNP and small-indel variant caller using deep neural networks. Poplin R; Chang PC; Alexander D; Schwartz S; Colthurst T; Ku A; Newburger D; Dijamco J; Nguyen N; Afshar PT; Gross SS; Dorfman L; McLean CY; DePristo MA Nat Biotechnol; 2018 Nov; 36(10):983-987. PubMed ID: 30247488 [TBL] [Abstract][Full Text] [Related]
4. Cnngeno: A high-precision deep learning based strategy for the calling of structural variation genotype. Bai R; Ling C; Cai L; Gao J Comput Biol Chem; 2021 Oct; 94():107417. PubMed ID: 33810991 [TBL] [Abstract][Full Text] [Related]
5. iSVP: an integrated structural variant calling pipeline from high-throughput sequencing data. Mimori T; Nariai N; Kojima K; Takahashi M; Ono A; Sato Y; Yamaguchi-Kabata Y; Nagasaki M BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S8. PubMed ID: 24564972 [TBL] [Abstract][Full Text] [Related]
6. Automated filtering of genome-wide large deletions through an ensemble deep learning framework. Hu Y; Mangal S; Zhang L; Zhou X Methods; 2022 Oct; 206():77-86. PubMed ID: 36038049 [TBL] [Abstract][Full Text] [Related]
7. Detecting genomic deletions from high-throughput sequence data with unsupervised learning. Li X; Wu Y BMC Bioinformatics; 2023 Jan; 23(Suppl 8):568. PubMed ID: 36707775 [TBL] [Abstract][Full Text] [Related]
8. dv-trio: a family-based variant calling pipeline using DeepVariant. Ip EKK; Hadinata C; Ho JWK; Giannoulatou E Bioinformatics; 2020 Jun; 36(11):3549-3551. PubMed ID: 32315409 [TBL] [Abstract][Full Text] [Related]
9. Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks. Su J; Zheng Z; Ahmed SS; Lam TW; Luo R Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849103 [TBL] [Abstract][Full Text] [Related]
10. InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining. Wu Z; Wu Y; Gao J BMC Genomics; 2020 Mar; 21(Suppl 1):173. PubMed ID: 32138660 [TBL] [Abstract][Full Text] [Related]
11. MAMnet: detecting and genotyping deletions and insertions based on long reads and a deep learning approach. Ding H; Luo J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580841 [TBL] [Abstract][Full Text] [Related]
12. HELLO: improved neural network architectures and methodologies for small variant calling. Ramachandran A; Lumetta SS; Klee EW; Chen D BMC Bioinformatics; 2021 Aug; 22(1):404. PubMed ID: 34391391 [TBL] [Abstract][Full Text] [Related]
13. CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks. Wang J; Ling C; Gao J Biomed Res Int; 2017; 2017():6375059. PubMed ID: 28630866 [TBL] [Abstract][Full Text] [Related]
14. An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data. Zhang J; Wang J; Wu Y BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S6. PubMed ID: 22537045 [TBL] [Abstract][Full Text] [Related]
15. svclassify: a method to establish benchmark structural variant calls. Parikh H; Mohiyuddin M; Lam HY; Iyer H; Chen D; Pratt M; Bartha G; Spies N; Losert W; Zook JM; Salit M BMC Genomics; 2016 Jan; 17():64. PubMed ID: 26772178 [TBL] [Abstract][Full Text] [Related]
16. DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads. Boža V; Brejová B; Vinař T PLoS One; 2017; 12(6):e0178751. PubMed ID: 28582401 [TBL] [Abstract][Full Text] [Related]
17. SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks. Akbarinejad S; Hadadian Nejad Yousefi M; Goudarzi M BMC Bioinformatics; 2021 Jun; 22(1):335. PubMed ID: 34147063 [TBL] [Abstract][Full Text] [Related]
18. PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies. Liao P; Satten GA; Hu YJ Genet Epidemiol; 2017 Jul; 41(5):375-387. PubMed ID: 28560825 [TBL] [Abstract][Full Text] [Related]
19. InPhaDel: integrative shotgun and proximity-ligation sequencing to phase deletions with single nucleotide polymorphisms. Patel A; Edge P; Selvaraj S; Bansal V; Bafna V Nucleic Acids Res; 2016 Jul; 44(12):e111. PubMed ID: 27105843 [TBL] [Abstract][Full Text] [Related]
20. DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning. Boemo MA BMC Genomics; 2021 Jun; 22(1):430. PubMed ID: 34107894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]