BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31831063)

  • 1. Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy.
    Shu C; Kaxon-Rupp AN; Collado JR; Damoiseaux R; Crosbie RH
    Skelet Muscle; 2019 Dec; 9(1):32. PubMed ID: 31831063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening identifies modulators of sarcospan that stabilize muscle cells and exhibit activity in the mouse model of Duchenne muscular dystrophy.
    Shu C; Parfenova L; Mokhonova E; Collado JR; Damoiseaux R; Campagna J; John V; Crosbie RH
    Skelet Muscle; 2020 Sep; 10(1):26. PubMed ID: 32948250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of sarcospan exacerbates pathology in mdx mice, but does not affect utrophin amelioration of disease.
    Gibbs EM; McCourt JL; Shin KM; Hammond KG; Marshall JL; Crosbie RH
    Hum Mol Genet; 2021 Apr; 30(3-4):149-159. PubMed ID: 33432327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy.
    Parvatiyar MS; Brownstein AJ; Kanashiro-Takeuchi RM; Collado JR; Dieseldorff Jones KM; Gopal J; Hammond KG; Marshall JL; Ferrel A; Beedle AM; Chamberlain JS; Renato Pinto J; Crosbie RH
    JCI Insight; 2019 Apr; 5(11):. PubMed ID: 31039133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.
    Parvatiyar MS; Marshall JL; Nguyen RT; Jordan MC; Richardson VA; Roos KP; Crosbie-Watson RH
    J Am Heart Assoc; 2015 Dec; 4(12):. PubMed ID: 26702077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways.
    McCourt JL; Stearns-Reider KM; Mamsa H; Kannan P; Afsharinia MH; Shu C; Gibbs EM; Shin KM; Kurmangaliyev YZ; Schmitt LR; Hansen KC; Crosbie RH
    Skelet Muscle; 2023 Jan; 13(1):1. PubMed ID: 36609344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F.
    Peter AK; Miller G; Capote J; DiFranco M; Solares-Pérez A; Wang EL; Heighway J; Coral-Vázquez RM; Vergara J; Crosbie-Watson RH
    Skelet Muscle; 2017 Jun; 7(1):11. PubMed ID: 28587652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD.
    Gibbs EM; Marshall JL; Ma E; Nguyen TM; Hong G; Lam JS; Spencer MJ; Crosbie-Watson RH
    Hum Mol Genet; 2016 Dec; 25(24):5395-5406. PubMed ID: 27798107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dystrophin and utrophin expression require sarcospan: loss of α7 integrin exacerbates a newly discovered muscle phenotype in sarcospan-null mice.
    Marshall JL; Chou E; Oh J; Kwok A; Burkin DJ; Crosbie-Watson RH
    Hum Mol Genet; 2012 Oct; 21(20):4378-93. PubMed ID: 22798625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Development of Robust Antibodies to Sarcospan, a Dystrophin- and Integrin-Associated Protein, for Basic and Translational Research.
    Mokhonova EI; Malik R; Mamsa H; Walker J; Gibbs EM; Crosbie RH
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin.
    Marshall JL; Oh J; Chou E; Lee JA; Holmberg J; Burkin DJ; Crosbie-Watson RH
    Hum Mol Genet; 2015 Apr; 24(7):2011-22. PubMed ID: 25504048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcospan reduces dystrophic pathology: stabilization of the utrophin-glycoprotein complex.
    Peter AK; Marshall JL; Crosbie RH
    J Cell Biol; 2008 Nov; 183(3):419-27. PubMed ID: 18981229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug discovery for Duchenne muscular dystrophy via utrophin promoter activation screening.
    Moorwood C; Lozynska O; Suri N; Napper AD; Diamond SL; Khurana TS
    PLoS One; 2011; 6(10):e26169. PubMed ID: 22028826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.
    Serena E; Zatti S; Zoso A; Lo Verso F; Tedesco FS; Cossu G; Elvassore N
    Stem Cells Transl Med; 2016 Dec; 5(12):1676-1683. PubMed ID: 27502519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel chemical-combination screen in zebrafish identifies epigenetic small molecule candidates for the treatment of Duchenne muscular dystrophy.
    Farr GH; Morris M; Gomez A; Pham T; Kilroy E; Parker EU; Said S; Henry C; Maves L
    Skelet Muscle; 2020 Oct; 10(1):29. PubMed ID: 33059738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of Dystrophin Expressing Chimeric Cells of Myoblast Origin as a Novel Stem Cell Based Therapy for Duchenne Muscular Dystrophy.
    Siemionow M; Cwykiel J; Heydemann A; Garcia-Martinez J; Siemionow K; Szilagyi E
    Stem Cell Rev Rep; 2018 Apr; 14(2):189-199. PubMed ID: 29305755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly functional mini-dystrophin/GFP fusion gene for cell and gene therapy studies of Duchenne muscular dystrophy.
    Li S; Kimura E; Ng R; Fall BM; Meuse L; Reyes M; Faulkner JA; Chamberlain JS
    Hum Mol Genet; 2006 May; 15(10):1610-22. PubMed ID: 16595609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy.
    Marshall JL; Crosbie-Watson RH
    Skelet Muscle; 2013 Jan; 3(1):1. PubMed ID: 23282144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening.
    Soblechero-Martín P; Albiasu-Arteta E; Anton-Martinez A; de la Puente-Ovejero L; Garcia-Jimenez I; González-Iglesias G; Larrañaga-Aiestaran I; López-Martínez A; Poyatos-García J; Ruiz-Del-Yerro E; Gonzalez F; Arechavala-Gomeza V
    Sci Rep; 2021 Sep; 11(1):18188. PubMed ID: 34521928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sarcospan-deficient mice maintain normal muscle function.
    Lebakken CS; Venzke DP; Hrstka RF; Consolino CM; Faulkner JA; Williamson RA; Campbell KP
    Mol Cell Biol; 2000 Mar; 20(5):1669-77. PubMed ID: 10669744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.