These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31831147)

  • 1. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak dispersion in gradient elution: An insight based on the plate model.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Feb; 1613():460670. PubMed ID: 31732158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the pre-elution of solute in initial mobile phase on retention time and peak compression under linear gradient elution.
    Hao W; Wang K; Yue B; Chen Q; Huang Y; Yu J; Li D
    J Chromatogr A; 2020 May; 1618():460858. PubMed ID: 31954543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of peak compression in gradient elution of liquid chromatography].
    Hao W; Liu L; Shen Q
    Se Pu; 2021 Jan; 39(1):10-14. PubMed ID: 34227354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretive search of optimal isocratic and gradient separations in micellar liquid chromatography in extended organic solvent domains.
    Navarro-Huerta JA; Vargas-García AG; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Apr; 1616():460784. PubMed ID: 31864726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed elution modulation for on-line comprehensive two-dimensional liquid chromatography coupling reversed phase liquid chromatography and hydrophilic interaction chromatography.
    Chen Y; Wu Y; Liu X; Li B; Hu D; Huang S; Ma M; Chen B
    J Chromatogr A; 2019 Jan; 1583():98-107. PubMed ID: 30477714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography.
    Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC
    J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms.
    van Schaick G; Pirok BWJ; Haselberg R; Somsen GW; Gargano AFG
    J Chromatogr A; 2019 Aug; 1598():67-76. PubMed ID: 31104847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch.
    Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG
    J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact peak compression factor in linear gradient elution. I. Theory.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peak compression in linear gradient elution liquid chromatography.
    Hao W; Wang K; Yue B; Chen Q; Huang Y; Yu J; Li D
    J Chromatogr A; 2020 May; 1619():460908. PubMed ID: 32005528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling solvent strength and selectivity in micellar liquid chromatography: role of organic modifiers and micelles.
    Kord AS; Khaledi MG
    Anal Chem; 1992 Sep; 64(17):1894-900. PubMed ID: 1416041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General theory of peak compression in liquid chromatography.
    Gritti F
    J Chromatogr A; 2016 Feb; 1433():114-22. PubMed ID: 26805599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the effects of solvent-mismatch and immiscibility in normal-phase × aqueous reversed-phase liquid chromatography.
    Groeneveld G; Dunkle MN; Pursch M; Mes EPC; Schoenmakers PJ; Gargano AFG
    J Chromatogr A; 2022 Feb; 1665():462818. PubMed ID: 35092876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention mechanisms in micellar liquid chromatography.
    Ruiz-Angel MJ; Carda-Broch S; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2009 Mar; 1216(10):1798-814. PubMed ID: 18838142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships.
    Li J; Cai B
    J Chromatogr A; 2001 Jan; 905(1-2):35-46. PubMed ID: 11206804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrument parameters controlling retention precision in gradient elution reversed-phase liquid.
    Beyaza A; Fana W; Carr PW; Schellinger AP
    J Chromatogr A; 2014 Dec; 1371():90-105. PubMed ID: 25459648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatographic characteristics of surfactant-mediated separations: micellar liquid chromatography vs ion pair chromatography.
    Kord AS; Khaledi MG
    Anal Chem; 1992 Sep; 64(17):1901-7. PubMed ID: 1416042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing experimental designs in liquid chromatography (I): Development and validation of a method for the comprehensive inspection of experimental designs.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Aug; 1624():461180. PubMed ID: 32540058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.