These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31831238)

  • 1. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus.
    Koopmans GF; Hiemstra T; Vaseur C; Chardon WJ; Voegelin A; Groenenberg JE
    Sci Total Environ; 2020 Apr; 711():135220. PubMed ID: 31831238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy.
    Mendez JC; Hiemstra T; Koopmans GF
    Environ Sci Technol; 2020 Oct; 54(19):11990-12000. PubMed ID: 32902278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of iron-coated sand for removing soluble phosphorus from drainage water.
    Chardon WJ; Groenenberg JE; Vink JPM; Voegelin A; Koopmans GF
    Sci Total Environ; 2022 Apr; 815():152738. PubMed ID: 34974002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils.
    Mallampati SR; Mitoma Y; Okuda T; Simion C; Lee BK
    J Hazard Mater; 2015 Oct; 297():74-82. PubMed ID: 25942697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.
    Yan J; Jiang T; Yao Y; Lu S; Wang Q; Wei S
    J Environ Sci (China); 2016 Apr; 42():152-162. PubMed ID: 27090706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate adsorption by ferrihydrite-amended soils.
    Rhoton FE; Bigham JM
    J Environ Qual; 2005; 34(3):890-6. PubMed ID: 15843652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cumulative and residual effects of repeated sewage sludge applications: forage productivity and soil quality implications in South Florida, USA.
    Sigua GC; Adjei MB; Rechcigl JE
    Environ Sci Pollut Res Int; 2005; 12(2):80-8. PubMed ID: 15859114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of water treatment residuals on phosphorus solubility and leaching.
    Elliott HA; O'Connor GA; Lu P; Brinton S
    J Environ Qual; 2002; 31(4):1362-9. PubMed ID: 12175057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced immobilization of phosphate by ferrihydrite during the photoreductive dissolution process.
    Lv Y; Liu J; Chen C; Lin X; Wu X; Chen Q; He H; Zhu R
    Sci Total Environ; 2022 Sep; 838(Pt 1):155835. PubMed ID: 35550904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of reactive materials to bind phosphorus.
    Chardon WJ; Groenenberg JE; Temminghoff EJ; Koopmans GF
    J Environ Qual; 2012; 41(3):636-46. PubMed ID: 22565245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release potential of phosphorus in Florida sandy soils in relation to phosphorus fractions and adsorption capacity.
    Zhang MK; He ZL; Calvert DV; Stoffella PJ; Li YC; Lamb EM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(5):793-809. PubMed ID: 12049117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorisation of N and P from waste water by using natural reactive hybrid sorbents: Nutrients (N,P,K) release evaluation in amended soils by dynamic experiments.
    Guaya D; Valderrama C; Farran A; Sauras T; Cortina JL
    Sci Total Environ; 2018 Jan; 612():728-738. PubMed ID: 28866400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil Organic Matter and Phosphate Sorption on Natural and Synthetic Fe Oxides under in Situ Conditions.
    Dorau K; Pohl L; Just C; Höschen C; Ufer K; Mansfeldt T; Mueller CW
    Environ Sci Technol; 2019 Nov; 53(22):13081-13087. PubMed ID: 31658416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosolids effects on phosphorus retention and release in some sandy Florida soils.
    Lu P; O'Connor GA
    J Environ Qual; 2001; 30(3):1059-63. PubMed ID: 11401253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between biosolids treatment process and soil phosphorus availability.
    Maguire RO; Sims JT; Dentel SK; Coale FJ; Mah JT
    J Environ Qual; 2001; 30(3):1023-33. PubMed ID: 11401249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.