These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31831247)
1. Potential fate of wetland soil carbon in a deltaic coastal wetland subjected to high relative sea level rise. Haywood BJ; Hayes MP; White JR; Cook RL Sci Total Environ; 2020 Apr; 711():135185. PubMed ID: 31831247 [TBL] [Abstract][Full Text] [Related]
2. Investigating the impact of in situ soil organic matter degradation through porewater spectroscopic analyses on marsh edge erosion. Hayes MP; Sapkota Y; White JR; Cook RL Chemosphere; 2021 Apr; 268():129266. PubMed ID: 33360143 [TBL] [Abstract][Full Text] [Related]
3. The denitrification potential of eroding wetlands in Barataria Bay, LA, USA: Implications for river reconnection. Vaccare J; Meselhe E; White JR Sci Total Environ; 2019 Oct; 686():529-537. PubMed ID: 31185400 [TBL] [Abstract][Full Text] [Related]
4. Long-term fate of rapidly eroding carbon stock soil profiles in coastal wetlands. Sapkota Y; White JR Sci Total Environ; 2021 Jan; 753():141913. PubMed ID: 32906042 [TBL] [Abstract][Full Text] [Related]
5. Characterization of coastal wetland soil organic matter: Implications for wetland submergence. Steinmuller HE; Chambers LG Sci Total Environ; 2019 Aug; 677():648-659. PubMed ID: 31071667 [TBL] [Abstract][Full Text] [Related]
6. [Three dimensional fluorescent characteristics of soil dissolved organic matter (DOM) in Jiaozhou Bay coastal wetlands, China]. Zi YY; Kong FL; Xi M; Li Y; Yang L Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3871-3881. PubMed ID: 29704345 [TBL] [Abstract][Full Text] [Related]
7. Toward a mechanistic understanding of "peat collapse" and its potential contribution to coastal wetland loss. Chambers LG; Steinmuller HE; Breithaupt JL Ecology; 2019 Jul; 100(7):e02720. PubMed ID: 30933312 [TBL] [Abstract][Full Text] [Related]
8. Coastal riverine wetland biogeochemistry follows soil organic matter distribution along a marsh-to-mangrove gradient (Florida, USA). Harttung SA; Radabaugh KR; Moyer RP; Smoak JM; Chambers LG Sci Total Environ; 2021 Nov; 797():149056. PubMed ID: 34298364 [TBL] [Abstract][Full Text] [Related]
9. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Hinson AL; Feagin RA; Eriksson M; Najjar RG; Herrmann M; Bianchi TS; Kemp M; Hutchings JA; Crooks S; Boutton T Glob Chang Biol; 2017 Dec; 23(12):5468-5480. PubMed ID: 28815992 [TBL] [Abstract][Full Text] [Related]
10. Climate and plant controls on soil organic matter in coastal wetlands. Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880 [TBL] [Abstract][Full Text] [Related]
11. Response of dissolved inorganic carbon dynamics to simulated tidal hydrological processes in coastal wetlands. Yu J; Wang X; Liu M; Li M; Xi M J Environ Manage; 2024 Aug; 366():121791. PubMed ID: 38991354 [TBL] [Abstract][Full Text] [Related]
13. [Temporal and spatial distribution of soil organic carbon and its storage in the coastal wetlands of Jiaozhou Bay, China.]. Zi YY; Xi M; Kong FL; Li Y; Yang L Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2075-2083. PubMed ID: 29737113 [TBL] [Abstract][Full Text] [Related]
14. Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands. Eagle MJ; Kroeger KD; Spivak AC; Wang F; Tang J; Abdul-Aziz OI; Ishtiaq KS; O'Keefe Suttles J; Mann AG Sci Total Environ; 2022 Nov; 848():157682. PubMed ID: 35917962 [TBL] [Abstract][Full Text] [Related]
15. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. Twilley RR; Bentley SJ; Chen Q; Edmonds DA; Hagen SC; Lam NS; Willson CS; Xu K; Braud D; Hampton Peele R; McCall A Sustain Sci; 2016; 11(4):711-731. PubMed ID: 30174740 [TBL] [Abstract][Full Text] [Related]
16. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? McKee KL; Vervaeke WC Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820 [TBL] [Abstract][Full Text] [Related]
17. Variability of soil organic carbon reservation capability between coastal salt marsh and riverside freshwater wetland in Chongming Dongtan and its microbial mechanism. Hu Y; Li Y; Wang L; Tang Y; Chen J; Fu X; Le Y; Wu J J Environ Sci (China); 2012; 24(6):1053-63. PubMed ID: 23505873 [TBL] [Abstract][Full Text] [Related]
18. Potential methane production in oligohaline wetlands undergoing erosion and accretion in the Mississippi River Delta Plain, Louisiana, USA. He S; Maiti K; Ghaisas N; Upreti K; Rivera-Monroy VH Sci Total Environ; 2023 Jun; 875():162685. PubMed ID: 36894099 [TBL] [Abstract][Full Text] [Related]
19. Risk of inundation to coastal wetlands and soil organic carbon and organic nitrogen accounting in Louisiana, USA. Zhong B; Xu YJ Environ Sci Technol; 2011 Oct; 45(19):8241-6. PubMed ID: 21863798 [TBL] [Abstract][Full Text] [Related]
20. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Dodla SK; Wang JJ; DeLaune RD; Cook RL Sci Total Environ; 2008 Dec; 407(1):471-80. PubMed ID: 18848345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]