These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31831307)
1. Optical properties of S Wang X; Yan P; Mu X Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117532. PubMed ID: 31831307 [TBL] [Abstract][Full Text] [Related]
2. S1 and S2 excited States of gas-phase Schiff-base retinal chromophores. Nielsen IB; Lammich L; Andersen LH Phys Rev Lett; 2006 Jan; 96(1):018304. PubMed ID: 16486529 [TBL] [Abstract][Full Text] [Related]
3. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. Kraack JP; Motzkus M; Buckup T J Phys Chem B; 2018 Dec; 122(51):12271-12281. PubMed ID: 30507189 [TBL] [Abstract][Full Text] [Related]
4. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Kraack JP; Buckup T; Motzkus M Phys Chem Chem Phys; 2011 Dec; 13(48):21402-10. PubMed ID: 22033578 [TBL] [Abstract][Full Text] [Related]
5. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base. Parusel AB; Pohorille A J Photochem Photobiol B; 2001 Dec; 65(1):13-21. PubMed ID: 11748000 [TBL] [Abstract][Full Text] [Related]
6. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal. Tachikawa H; Iyama T J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716 [TBL] [Abstract][Full Text] [Related]
7. Solvent effects on the low-lying excited states of a model of retinal. Muñoz Losa A; Fdez Galván I; Martín ME; Aguilar MA J Phys Chem B; 2006 Sep; 110(36):18064-71. PubMed ID: 16956299 [TBL] [Abstract][Full Text] [Related]
8. S1 and S2 excited states of gas-phase Schiff-base retinal chromophores: a time-dependent density functional theoretical investigation. Sun M; Ding Y; Cui G; Liu Y J Phys Chem A; 2007 Apr; 111(15):2946-50. PubMed ID: 17388381 [TBL] [Abstract][Full Text] [Related]
9. Study on Asymmetric Vibrational Coherent Magnetic Transitions and Origin of Fluorescence in Symmetric Structures. Sun L; Li N; Ma J; Wang J Molecules; 2023 Sep; 28(18):. PubMed ID: 37764420 [TBL] [Abstract][Full Text] [Related]
10. Ground and excited states of retinal schiff base chromophores by multiconfigurational perturbation theory. Sekharan S; Weingart O; Buss V Biophys J; 2006 Jul; 91(1):L07-9. PubMed ID: 16648170 [TBL] [Abstract][Full Text] [Related]
11. Visualizations of transition dipoles, charge transfer, and electron-hole coherence on electronic state transitions between excited states for two-photon absorption. Sun M; Chen J; Xu H J Chem Phys; 2008 Feb; 128(6):064106. PubMed ID: 18282027 [TBL] [Abstract][Full Text] [Related]
12. Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes. Buckup T; Motzkus M Annu Rev Phys Chem; 2014; 65():39-57. PubMed ID: 24245903 [TBL] [Abstract][Full Text] [Related]
13. Synthetic control of retinal photochemistry and photophysics in solution. Bassolino G; Sovdat T; Liebel M; Schnedermann C; Odell B; Claridge TD; Kukura P; Fletcher SP J Am Chem Soc; 2014 Feb; 136(6):2650-8. PubMed ID: 24479840 [TBL] [Abstract][Full Text] [Related]
14. The Schiff base bond configuration in bacteriorhodopsin and in model compounds. Livnah N; Sheves M Biochemistry; 1993 Jul; 32(28):7223-8. PubMed ID: 8343511 [TBL] [Abstract][Full Text] [Related]
15. The nature of chirality induced by molecular aggregation and self-assembly. Mu X; Wang J; Duan G; Li Z; Wen J; Sun M Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():188-198. PubMed ID: 30639912 [TBL] [Abstract][Full Text] [Related]
16. Absorption of schiff-base retinal chromophores in vacuo. Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214 [TBL] [Abstract][Full Text] [Related]
17. Light activation of the isomerization and deprotonation of the protonated Schiff base retinal. Kubli-Garfias C; Salazar-Salinas K; Perez-Angel EC; Seminario JM J Mol Model; 2011 Oct; 17(10):2539-47. PubMed ID: 21207087 [TBL] [Abstract][Full Text] [Related]
18. Optical Properties of Artemisinin and Its Derivatives. Ma J; Qiao W; Mu X; Dong J; Quan J; Tian C ACS Omega; 2020 Dec; 5(48):30849-30857. PubMed ID: 33324794 [TBL] [Abstract][Full Text] [Related]
19. Optical physics on chiral brominated azapirones: Bromophilone A and B. Tian C; Zhang Y; Mu X; Quan J; Sun M Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 242():118780. PubMed ID: 32801023 [TBL] [Abstract][Full Text] [Related]
20. Influence of Lipid Compositions in the Events of Retinal Schiff Base of Bacteriorhodopsin Embedded in Covalently Circularized Nanodiscs: Thermal Isomerization, Photoisomerization, and Deprotonation. Huang HY; Syue ML; Chen IC; Yu TY; Chu LK J Phys Chem B; 2019 Oct; 123(43):9123-9133. PubMed ID: 31584816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]