These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31831417)

  • 1. Learning Non-Local Spatial Correlations To Restore Sparse 3D Single-Photon Data.
    Chen S; Halimi A; Ren X; McCarthy A; Su X; McLaughlin S; Buller GS
    IEEE Trans Image Process; 2019 Dec; ():. PubMed ID: 31831417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data.
    Altmann Y; Ren X; McCarthy A; Buller GS; McLaughlin S
    IEEE Trans Image Process; 2016 May; 25(5):1935-46. PubMed ID: 26886984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning based photon-efficient 3D and reflectivity imaging with a 64 × 64 single-photon avalanche detector array.
    Yang X; Tong Z; Jiang P; Xu L; Wu L; Hu J; Yang C; Zhang W; Zhang Y; Zhang J
    Opt Express; 2022 Aug; 30(18):32948-32964. PubMed ID: 36242346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR.
    Ren X; Altmann Y; Tobin R; Mccarthy A; Mclaughlin S; Buller GS
    Opt Express; 2018 Nov; 26(23):30146-30161. PubMed ID: 30469893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A blind deconvolution approach to ultrasound imaging.
    Yu C; Zhang C; Xie L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):271-80. PubMed ID: 24626035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth Restoration From RGB-D Data via Joint Adaptive Regularization and Thresholding on Manifolds.
    Liu X; Zhai D; Chen R; Ji X; Zhao D; Gao W
    IEEE Trans Image Process; 2019 Mar; 28(3):1068-1079. PubMed ID: 30273152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D target detection and spectral classification for single-photon LiDAR data.
    Belmekki MAA; Leach J; Tobin R; Buller GS; McLaughlin S; Halimi A
    Opt Express; 2023 Jul; 31(15):23729-23745. PubMed ID: 37475217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.
    Kumar D; Hariharan H; Faizy TD; Borchert P; Siemonsen S; Fiehler J; Reddy R; Sedlacik J
    Neuroimage; 2018 Sep; 178():583-601. PubMed ID: 29763672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth reconstruction from sparse samples: representation, algorithm, and sampling.
    Liu LK; Chan SH; Nguyen TQ
    IEEE Trans Image Process; 2015 Jun; 24(6):1983-96. PubMed ID: 25769151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SyS3DS: Systematic Sampling of Large-Scale LiDAR Point Clouds for Semantic Segmentation in Forestry Robotics.
    Mukhandi H; Ferreira JF; Peixoto P
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manifold regularized matrix completion for multi-label learning with ADMM.
    Liu B; Li Y; Xu Z
    Neural Netw; 2018 May; 101():57-67. PubMed ID: 29486381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-modulated continuous-wave 3D imaging with high photon efficiency.
    Huang X; Hong Y; Li ZP; Xu F
    Opt Lett; 2022 Jul; 47(14):3568-3571. PubMed ID: 35838732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.
    Ren X; Connolly PWR; Halimi A; Altmann Y; McLaughlin S; Gyongy I; Henderson RK; Buller GS
    Opt Express; 2018 Mar; 26(5):5541-5557. PubMed ID: 29529757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Sparse Aperture ISAR Autofocusing and imaging via ADMM based Sparse Bayesian Learning.
    Zhang S; Liu Y; Li X
    IEEE Trans Image Process; 2019 Dec; ():. PubMed ID: 31831425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fast and Robust Non-Sparse Signal Recovery Algorithm for Wearable ECG Telemonitoring Using ADMM-Based Block Sparse Bayesian Learning.
    Cheng Y; Ye Y; Hou M; He W; Li Y; Deng X
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29937512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range depth imaging using a single-photon detector array and non-local data fusion.
    Chan S; Halimi A; Zhu F; Gyongy I; Henderson RK; Bowman R; McLaughlin S; Buller GS; Leach J
    Sci Rep; 2019 May; 9(1):8075. PubMed ID: 31147564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing ISAR Image Efficiently via Convolutional Reweighted l
    Zhang S; Liu Y; Li X; Hu D
    IEEE Trans Image Process; 2021; 30():4291-4304. PubMed ID: 33826516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation.
    Dai H; Gu G; He W; Ye L; Mao T; Chen Q
    Opt Express; 2016 Nov; 24(23):26080-26096. PubMed ID: 27857346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality Image Restoration Using Low-Rank Patch Regularization and Global Structure Sparsity.
    Zhang M; Desrosiers C
    IEEE Trans Image Process; 2018 Oct; ():. PubMed ID: 30296228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust single-photon counting imaging with spatially correlated and total variation constraints.
    Chen W; Li S; Tian X
    Opt Express; 2020 Jan; 28(2):2625-2639. PubMed ID: 32121947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.