BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31831810)

  • 1. Plasmid-based and -free methods using CRISPR/Cas9 system for replacement of targeted genes in Colletotrichum sansevieriae.
    Nakamura M; Okamura Y; Iwai H
    Sci Rep; 2019 Dec; 9(1):18947. PubMed ID: 31831810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gln-tRNA-based CRISPR/Cas9 knockout system enables the functional characterization of genes in the genetically recalcitrant brassica anthracnose fungus Colletotrichum higginsianum.
    Bhadauria V; Han T; Li G; Ma W; Zhang M; Yang J; Zhao W; Peng YL
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127953. PubMed ID: 37951433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells.
    Shin SW; Kim D; Lee JS
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The establishment of multiple knockout mutants of Colletotrichum orbiculare by CRISPR-Cas9 and Cre-loxP systems.
    Yamada K; Yamamoto T; Uwasa K; Osakabe K; Takano Y
    Fungal Genet Biol; 2023 Mar; 165():103777. PubMed ID: 36669556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum.
    Wang C; Rollins JA
    Fungal Genet Biol; 2021 Sep; 154():103598. PubMed ID: 34119663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9.
    Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z
    BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 mutagenesis in Volvox carteri.
    Ortega-Escalante JA; Jasper R; Miller SM
    Plant J; 2019 Feb; 97(4):661-672. PubMed ID: 30406958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis.
    Rocafort M; Arshed S; Hudson D; Sidhu JS; Bowen JK; Plummer KM; Bradshaw RE; Johnson RD; Johnson LJ; Mesarich CH
    Fungal Biol; 2022 Jan; 126(1):35-46. PubMed ID: 34930557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus.
    Arazoe T; Miyoshi K; Yamato T; Ogawa T; Ohsato S; Arie T; Kuwata S
    Biotechnol Bioeng; 2015 Dec; 112(12):2543-9. PubMed ID: 26039904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient multiple gene knockout in Colletotrichum higginsianum via CRISPR/Cas9 ribonucleoprotein and URA3-based marker recycling.
    Yonehara K; Kumakura N; Motoyama T; Ishihama N; Dallery JF; O'Connell R; Shirasu K
    Mol Plant Pathol; 2023 Nov; 24(11):1451-1464. PubMed ID: 37522511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing in Ustilago maydis using the CRISPR-Cas system.
    Schuster M; Schweizer G; Reissmann S; Kahmann R
    Fungal Genet Biol; 2016 Apr; 89():3-9. PubMed ID: 26365384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid.
    Suzuki Y; Kouzuma A; Watanabe K
    J Gen Appl Microbiol; 2020 Apr; 66(1):41-45. PubMed ID: 31447475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 system in Plasmodium falciparum using the centromere plasmid.
    Payungwoung T; Shinzawa N; Hino A; Nishi T; Murata Y; Yuda M; Iwanaga S
    Parasitol Int; 2018 Oct; 67(5):605-608. PubMed ID: 29886342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.
    Cen Y; Timmermans B; Souffriau B; Thevelein JM; Van Dijck P
    Fungal Genet Biol; 2017 Oct; 107():44-50. PubMed ID: 28822858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.
    Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K
    Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of the CRISPR-Cas9 system in
    Ho J; Zhao M; Wojcik S; Taiaroa G; Butler M; Poulter R
    J Med Microbiol; 2020 Mar; 69(3):478-486. PubMed ID: 31935181
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.