These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3183207)

  • 21. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of whisper and creak vocal mechanisms on vocal tract resonances.
    Swerdlin Y; Smith J; Wolfe J
    J Acoust Soc Am; 2010 Apr; 127(4):2590-8. PubMed ID: 20370040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the glottal volume-velocity waveform for three voice types.
    Childers DG; Ahn C
    J Acoust Soc Am; 1995 Jan; 97(1):505-19. PubMed ID: 7860829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of glottal open regions by exploiting changes in the vocal tract system characteristics.
    Prasad RS; Yegnanarayana B
    J Acoust Soc Am; 2016 Jul; 140(1):666. PubMed ID: 27475188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unsteady flow through in-vitro models of the glottis.
    Hofmans GC; Groot G; Ranucci M; Graziani G; Hirschberg A
    J Acoust Soc Am; 2003 Mar; 113(3):1658-75. PubMed ID: 12656399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of oscillation of a mechanical hemilarynx model on mean transglottal pressures and flows.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1562-9. PubMed ID: 11572366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Normalized amplitude quotient for parametrization of the glottal flow.
    Alku P; Bäckström T; Vilkman E
    J Acoust Soc Am; 2002 Aug; 112(2):701-10. PubMed ID: 12186049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring and modeling vocal source-tract interaction.
    Childers DG; Wong CF
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):663-71. PubMed ID: 7927387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glottal inverse filtering with the closed-phase covariance analysis utilizing mathematical constraints in modelling of the vocal tract.
    Alku P; Magi C; Bäckström T
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):200-9. PubMed ID: 19415566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On subglottal formant analysis.
    Cranen B; Boves L
    J Acoust Soc Am; 1987 Mar; 81(3):734-46. PubMed ID: 3584682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of variations in the male and female glottal wave.
    Monsen RB; Engebretson AM
    J Acoust Soc Am; 1977 Oct; 62(4):981-93. PubMed ID: 911405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
    Schickhofer L; Mihaescu M
    J Biomech; 2020 Jan; 99():109484. PubMed ID: 31761432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic analysis of trill sounds.
    Dhananjaya N; Yegnanarayana B; Bhaskararao P
    J Acoust Soc Am; 2012 Apr; 131(4):3141-52. PubMed ID: 22501086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of glottal dynamics in the production of shouted speech.
    Mittal VK; Yegnanarayana B
    J Acoust Soc Am; 2013 May; 133(5):3050-61. PubMed ID: 23654408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscous effects in a static physical model of the uniform glottis.
    Fulcher LP; Scherer RC; Powell T
    J Acoust Soc Am; 2013 Aug; 134(2):1253-60. PubMed ID: 23927123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.