BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31832093)

  • 1. HMEJ-mediated efficient site-specific gene integration in chicken cells.
    Xie L; Sun J; Mo L; Xu T; Shahzad Q; Chen D; Yang W; Liao Y; Lu Y
    J Biol Eng; 2019; 13():90. PubMed ID: 31832093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Knock-in of a Fluorescent Protein Gene into the Chicken Vasa Homolog Locus of Chicken Primordial Germ Cells using CRIS-PITCh Method.
    Ezaki R; Ichikawa K; Matsuzaki M; Horiuchi H
    J Poult Sci; 2022 Apr; 59(2):182-190. PubMed ID: 35528378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes.
    Owen JR; Hennig SL; McNabb BR; Mansour TA; Smith JM; Lin JC; Young AE; Trott JF; Murray JD; Delany ME; Ross PJ; Van Eenennaam AL
    BMC Genomics; 2021 Feb; 22(1):118. PubMed ID: 33581720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted knock-in into the OVA locus of chicken cells using CRISPR/Cas9 system with homology-independent targeted integration.
    Shi M; Kawabe Y; Ito A; Kamihira M
    J Biosci Bioeng; 2020 Mar; 129(3):363-370. PubMed ID: 31594694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis.
    Yuan M; Zhang J; Gao Y; Yuan Z; Zhu Z; Wei Y; Wu T; Han J; Zhang Y
    J Biol Chem; 2021; 296():100497. PubMed ID: 33675752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated Targeted Integration In Vivo Using a Homology-mediated End Joining-based Strategy.
    Yao X; Wang X; Liu J; Shi L; Huang P; Yang H
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Successful CRISPR/Cas9 mediated homologous recombination in a chicken cell line.
    Antonova E; Glazova O; Gaponova A; Eremyan A; Zvereva S; Grebenkina N; Volkova N; Volchkov P
    F1000Res; 2018; 7():238. PubMed ID: 29946437
    [No Abstract]   [Full Text] [Related]  

  • 8. Erratum: CRISPR/Cas9-mediated Targeted Integration In Vivo Using a Homology-mediated End Joining-based Strategy.
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33690264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prime editing in chicken fibroblasts and primordial germ cells.
    Atsuta Y; Suzuki K; Iikawa H; Yaguchi H; Saito D
    Dev Growth Differ; 2022 Dec; 64(9):548-557. PubMed ID: 36374008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 gene editing in a chicken model: current approaches and applications.
    Chojnacka-Puchta L; Sawicka D
    J Appl Genet; 2020 May; 61(2):221-229. PubMed ID: 31925767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing Mediated by Primordial Germ Cell in Chicken.
    Han JY; Lee HJ
    Methods Mol Biol; 2023; 2637():301-312. PubMed ID: 36773156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-X-C chemokine receptor type 4 (CXCR4) is a key receptor for chicken primordial germ cell migration.
    Lee JH; Park JW; Kim SW; Park J; Park TS
    J Reprod Dev; 2017 Dec; 63(6):555-562. PubMed ID: 28867677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing Mediated by Primordial Germ Cell in Chicken.
    Han JY; Lee HJ
    Methods Mol Biol; 2017; 1630():153-163. PubMed ID: 28643257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale genome editing based on high-capacity adenovectors and CRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells.
    Tasca F; Brescia M; Wang Q; Liu J; Janssen JM; Szuhai K; Gonçalves MAFV
    Nucleic Acids Res; 2022 Jul; 50(13):7761-7782. PubMed ID: 35776127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-based strategies for targeted transgene knock-in and gene correction.
    Lau CH; Tin C; Suh Y
    Fac Rev; 2020; 9():20. PubMed ID: 33659952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of chickens with green fluorescent protein-knockin in the Z chromosome and detection of green fluorescent protein-positive chicks in the embryonic stage.
    Kang KS; Shin SP; Ha IS; Kim SE; Kim KH; Ryu HJ; Park TS
    Anim Biosci; 2023 Jun; 36(6):973-979. PubMed ID: 36915940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system.
    Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z
    J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment.
    Lee JS; Grav LM; Pedersen LE; Lee GM; Kildegaard HF
    Biotechnol Bioeng; 2016 Nov; 113(11):2518-23. PubMed ID: 27159230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipofection with Lipofectamine™ 2000 in a heparin-free growth medium results in high transfection efficiency in chicken primordial germ cells.
    Watanabe T; Ochi Y; Kajihara R; Ichikawa K; Ezaki R; Matsuzaki M; Horiuchi H
    Biotechnol J; 2023 Dec; 18(12):e2300328. PubMed ID: 37559489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.