BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31832097)

  • 1. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.
    Li Y; Tu M; Feng Y; Wang W; Messing J
    Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology and whole-plant carbon partitioning during stem sugar accumulation in sweet dwarf sorghum.
    Babst BA; Karve A; Sementilli A; Dweikat I; Braun DM
    Planta; 2021 Sep; 254(4):80. PubMed ID: 34546416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental dynamics of stem starch accumulation in
    McKinley BA; Casto AL; Rooney WL; Mullet JE
    Plant Direct; 2018 Aug; 2(8):e00074. PubMed ID: 31245742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
    Bihmidine S; Julius BT; Dweikat I; Braun DM
    Plant Signal Behav; 2016; 11(1):e1117721. PubMed ID: 26619184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar accumulation enhancement in sorghum stem is associated with reduced reproductive sink strength and increased phloem unloading activity.
    Xue X; Beuchat G; Wang J; Yu YC; Moose S; Chen J; Chen LQ
    Front Plant Sci; 2023; 14():1233813. PubMed ID: 37767289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.
    Bihmidine S; Baker RF; Hoffner C; Braun DM
    BMC Plant Biol; 2015 Jul; 15():186. PubMed ID: 26223524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem sugar accumulation in sweet sorghum - activity and expression of sucrose metabolizing enzymes and sucrose transporters.
    Qazi HA; Paranjpe S; Bhargava S
    J Plant Physiol; 2012 Apr; 169(6):605-13. PubMed ID: 22325624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum.
    Mizuno H; Kasuga S; Kawahigashi H
    BMC Plant Biol; 2018 Jan; 18(1):2. PubMed ID: 29298675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling.
    Mizuno H; Kasuga S; Kawahigashi H
    Biotechnol Biofuels; 2016; 9():127. PubMed ID: 27330561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new high-throughput assay for determining soluble sugar in sorghum internode-extracted juice.
    Li Y; Mehta R; Messing J
    Planta; 2018 Oct; 248(4):785-793. PubMed ID: 29948129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
    Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X
    Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum.
    Kebrom TH; McKinley B; Mullet JE
    Biotechnol Biofuels; 2017; 10():159. PubMed ID: 28649278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grain, sugar and biomass accumulation in photoperiod-sensitive sorghums. II. Biochemical processes at internode level and interaction with phenology.
    Gutjahr S; Cl Ment-Vidal A; Soutiras A; Sonderegger N; Braconnier S; Dingkuhn ML; Luquet D
    Funct Plant Biol; 2013 May; 40(4):355-368. PubMed ID: 32481113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci.
    Ghate T; Deshpande S; Bhargava S
    Plant Biol (Stuttg); 2017 May; 19(3):396-405. PubMed ID: 28032438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem vacuole-targetted sucrose isomerase enhances sugar content in sorghum.
    Liu G; Zhang Y; Gong H; Li S; Pan Y; Davis C; Jing HC; Wu L; Godwin ID
    Biotechnol Biofuels; 2021 Mar; 14(1):53. PubMed ID: 33648580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.
    Brenton ZW; Cooper EA; Myers MT; Boyles RE; Shakoor N; Zielinski KJ; Rauh BL; Bridges WC; Morris GP; Kresovich S
    Genetics; 2016 Sep; 204(1):21-33. PubMed ID: 27356613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of SbMyb60 in Sorghum bicolor impacts both primary and secondary metabolism.
    Scully ED; Gries T; Palmer NA; Sarath G; Funnell-Harris DL; Baird L; Twigg P; Seravalli J; Clemente TE; Sattler SE
    New Phytol; 2018 Jan; 217(1):82-104. PubMed ID: 28944535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorghum stem aerenchyma formation is regulated by
    Casto AL; McKinley BA; Yu KMJ; Rooney WL; Mullet JE
    Plant Direct; 2018 Nov; 2(11):e00085. PubMed ID: 31245693
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.